Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 053202    DOI: 10.1088/1674-1056/ac8cdd
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical study of the enhancement of saturable absorption of Kr under x-ray free-electron laser

Jiaxin Ye(叶佳鑫)1,2, Yixuan Yang(杨怡璇)3, Chen Yang(杨晨)1,2,†, and Gang Jiang(蒋刚)1,2,‡
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Chengdu 610065, China;
3 College of Electrical Engineering, Sichuan University, Chengdu 610065, China
Abstract  The generation of hollow atoms will reduce the probability of light absorption and provide a high-quality diffraction image in the experiment. In this paper, we calculated the ionization rate of the Kr atom under x-ray free-electron laser (XFEL) using Hartree-Fock-Slater model and simulated the ionization model of Kr atom using Monte-Carlo method to determine the response of the hollow atom of Kr atom to the XFEL photon energy. Calculating the correlation between the total photoionization cross-section of the ground state of Kr atom and the photon energy, we determined three particular photon energies of 1.75 keV, 1.90 keV, and 14.30 keV. The dynamics simulation under the experimental condition's 17.50 keV photon energy was achieved by implementing the Monte-Carlo method and calibrating the photon flux modeling parameters. Consequently, our calculated data are more consistent with experimental phenomena than previous theoretical studies. The saturable absorption of Kr at 1.75 keV, 1.90 keV, 14.30 keV, and 17.50 keV energies was further investigated by using the optimized photon flux model theory. We compared the statistics on main ionization paths under those four specific photon energies and calculated the population changes of various Kr hollow atoms with different configurations. The results demonstrate that the population of hollow atoms produced at the critical ionization photon energy is high. Furthermore, the change of population with respect to position is smooth, which shows a significant difference between the generation mode of ions with low and high photon energies. The result is important for the study of medium- and high-Z element hollow atoms, which has substantial implications for the study of hollow atoms with medium and high charge states, as well as for the scaling of photon energy of free electron lasers.
Keywords:  x-ray free-electron lasers      krypton      hollow atoms      Monte-Carlo simulation  
Received:  20 May 2022      Revised:  02 August 2022      Accepted manuscript online:  26 August 2022
PACS:  32.80.Hd (Auger effect)  
  32.80.Aa (Inner-shell excitation and ionization)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 10822041A2038).
Corresponding Authors:  Chen Yang, Gang Jiang     E-mail:  yangchen@scu.edu.cn;gjiang@scu.edu.cn

Cite this article: 

Jiaxin Ye(叶佳鑫), Yixuan Yang(杨怡璇), Chen Yang(杨晨), and Gang Jiang(蒋刚) Theoretical study of the enhancement of saturable absorption of Kr under x-ray free-electron laser 2023 Chin. Phys. B 32 053202

[1] Pellegrini C, Marinelli A and Reiche S 2016 Rev. Mod. Phys. 88 015006
[2] Sobolev E, Zolotarev S, Giewekemeyer K, et al. 2020 Commun. Phys. 3 97
[3] Lehmkühler F, Dallari F, Jain A, Sikorski M, Möller J, Frenzel L, Lokteva I, Mills G, Walther M, Sinn H, Schulz F, Dartsch M, Markmann V, Bean R, Kim Y, Vagovic P, Madsen A, Mancuso A P and Grübel G 2020 Proc. Natl. Acad. Sci. USA 117 24110
[4] Pellegrini C 2012 EPJ H 37 659
[5] Caleman C, Tîmneanu N, Martin A V, Jönsson H O, Aquila A, Barty A, Scott H A, White T A and Chapman H N 2015 Opt. Express 23 1213
[6] Kobayashi A, Sekiguchi Y, Takayama Y, Oroguchi T and Nakasako M 2014 Opt. Express 22 27892
[7] Ho P J, Kanter E P and Young L 2015 Phys. Rev. A 92 063430
[8] Howells M, Beetz T, Chapman H, Cui C, Holton J, Jacobsen C, Kirz J, Lima E, Marchesini S, Miao H, Sayre D, Shapiro D, Spence J and Starodub D 2009 J. Electron Spectros. Relat. Phenomena 170 4
[9] Doumy G, Roedig C, Son S K, et al. 2011 Phys. Rev. Lett. 106 083002
[10] Nagler B, Zastrau U, Fäustlin R R, et al. 2009 Nat. Phys. 5 693
[11] Deng P and Jiang G 2019 Chin. Phys. B 28 063203
[12] Feng L and Jiang G 2017 Acta Phys. Sin. 66 153201 (in Chinese)
[13] Yoneda H, Inubushi Y, Yabashi M, Katayama T, Ishikawa T, Ohashi H, Yumoto H, Yamauchi K, Mimura H and Kitamura H 2014 Nat. Commun. 5 5080
[14] Son S K, Young L and Santra R 2011 Phys. Rev. A 83 033402
[15] Decking W, Abeghyan S, Abramian P, et al. 2020 Nat. Photon. 14 391
[16] Jia H, Huang S, Jiao Y, Li J, Liu K, Liu S, Liu W, Liu Z, Long T, Qin W and Zhao S 2022 High Power Laser and Particle Beams 34 054001 (in Chinese)
[17] Murphy B F, Osipov T, Jurek Z, et al. 2014 Nat. Comm. 5 4281
[18] Santra R 2009 J. Phys. B 42 169801
[19] Toyota K, Jurek Z, Son S K, Fukuzawa H, Ueda K, Berrah N, Rudek B, Rolles D, Rudenko A and Santra R 2019 J. Synchrotron Rad. 26 1017
[20] Li Y, Gao C, Zeng J and Yuan J 2022 J. Phys. B 55 025002
[21] Gao C, Zeng J and Yuan J 2016 J. Phys. B 49 044001
[22] Son S K and Santra R 2012 Phys. Rev. A 85 063415
[23] Rudek B, Son S K, Foucar L, et al. 2012 Nat. Photon. 6 858
[24] Wei B, Guo H, Ji Y, Hou S and Yin J 2020 Chin. Phys. B 29 043701
[25] Maazouzi A E, Masrour R, Jabar A and Hamedoun M 2019 Chin. Phys. B 28 057504
[26] Krause M O and Carlson T A 1967 Phys. Rev. 158 18
[27] Chernov V E, Dorofeev D L, Elfimov S V, Zon B A, Gavrilov G E and Naryshkin Y G 2015 Laser Phys. Lett. 12 036002
[28] Ho P J, Bostedt C, Schorb S and Young L 2014 Phys. Rev. Lett. 113 253001
[29] Ding X, Wu C, Cao M, Zhang D, Zhang M, Xue Y, Yu D and Dong C 2020 Chin. Phys. B 29 033101
[1] Relaxation of Ne1+ 1s02s22p6 np produced by resonant excitation of an ultraintense ultrafast x-ray pulse
Jie Yan(闫杰), Yanpeng Liu(刘彦鹏), Yong Hou(侯永), Cheng Gao(高城), Jianhua Wu(吴建华), Jiaolong Zeng(曾交龙), and Jianmin Yuan(袁建民). Chin. Phys. B, 2023, 32(6): 063101.
[2] Impact of incident direction on neutron-induced single-bit and multiple-cell upsets in 14 nm FinFET and 65 nm planar SRAMs
Shao-Hua Yang(杨少华), Zhan-Gang Zhang(张战刚), Zhi-Feng Lei(雷志锋), Yun Huang(黄云), Kai Xi(习凯), Song-Lin Wang(王松林), Tian-Jiao Liang(梁天骄), Teng Tong(童腾), Xiao-Hui Li(李晓辉), Chao Peng(彭超), Fu-Gen Wu(吴福根), and Bin Li(李斌). Chin. Phys. B, 2022, 31(12): 126103.
[3] Mechanisms of atmospheric neutron-induced single event upsets in nanometric SOI and bulk SRAM devices based on experiment-verified simulation tool
Zhi-Feng Lei(雷志锋), Zhan-Gang Zhang(张战刚), Yun-Fei En(恩云飞), Yun Huang(黄云). Chin. Phys. B, 2018, 27(6): 066105.
[4] Generalized oscillator strengths for some higher valence-shell excitations of krypton atom
Zhu Lin-Fan(朱林繁), Zhang Fang-Xin(张放心), Cheng Hua-Dong(成华东), Yuan Hui(袁慧), Yuan Zhen-Sheng(苑震生), Li Wen-Bin(李文斌), Liu Xiao-Jing(刘小井), and Xu Ke-Zun(徐克尊). Chin. Phys. B, 2007, 16(10): 2938-2945.
[5] Incident angle dependence of secondary electron emission from carbon induced by swift H2+
Lu Qi-Liang (卢其亮), Zhou Zhu-Ying (周筑颖), Shi Li-Qun (施立群), Zhao Guo-Qing (赵国庆). Chin. Phys. B, 2005, 14(7): 1465-1470.
No Suggested Reading articles found!