Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 084203    DOI: 10.1088/1674-1056/ac5391
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating

Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉)
State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun 130022, China
Abstract  A 1040 nm tapered laser with tapered distributed Bragg reflector (DBR) grating is designed and fabricated. By designing the grating with tapered layout, the tapered DBR grating exhibits the scattering effect on side backward-traveling waves, thus achieving additional suppression of parasitic oscillation. Under the suppression of parasitic oscillation, the spatial and spectral characteristics of the tapered laser are improved. The experimental results show that a near-Gaussian far-field distribution and a kink-free P-I characteristics are achieved, and a single peak emission with a wavelength of 1046.84 nm and a linewidth of 56 pm is obtained.
Keywords:  tapered lasers      distributed Bragg reflector      backward-traveling wave      parasitic oscillation  
Received:  14 October 2021      Revised:  15 January 2022      Accepted manuscript online:  10 February 2022
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by Jilin Science and Technology Development Plan, China (Grant Nos. 20210201030GX and 20190302052GX).
Corresponding Authors:  Jie Fan, Xiao-Hui Ma     E-mail:  fanjie@cust.edu.cn;mxh@cust.edu.cn

Cite this article: 

Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉) Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating 2022 Chin. Phys. B 31 084203

[1] Chan H Y, Alam S, Xu L, Bateman J, Richardson D J and Shepherd D P 2014 Opt. Express 22 21938
[2] Park J H, Jedrzejczyk D, Feise D, Maaßdorf A, Paschke K, Kang T Y, Ha J H, Oh G Y, Jeon H N, Yim B and Lee H Y 2014 IEEE Photonics Technol. Lett. 26 1936
[3] Hasler K H, Sumpf B, Adamiec P, Bugge F, Fricke J, Ressel P, Wenzel H, Erbert G and Trankle G 2008 IEEE Photonics Technol. Lett. 20 1648
[4] Fiebig C, Blume G, Uebernickel M, Feise D, Kaspari C, Paschke K, Fricke J, Wenzel H and Erbert G 2009 IEEE J. Sel. Top. Quantum Electron. 15 978
[5] Müller A, Fricke J, Bugge F, Brox O, Erbert G and Sumpf B 2016 Appl. Phys. B 122 87
[6] Spreemann M, Lichtner M, Radziunas M, Bandelow U and Wenzel H 2009 IEEE J. Quantum Electron. 45 609
[7] Jedrzejczyk D, Brox O, Bugge F, Fricke J, Ginolas A, Paschke K, Wenzel H and Erbert G 2010 Proc. SPIE 7583 758317
[8] Lei Y X, Chen Y Y, Gao F, Ma D Z, Jia P, Cheng Q, Wu H, Ruan C K, Liang L, Chen C, Zhang J, Tian J Y, Qin L, Ning Y Q and Wang L J 2019 IEEE Photonics J. 11 1500609
[9] Odriozola H, Tijero J M G, Borruel L, Esquivias I, Wenzel H, Dittmar F, Paschke K, Sumpf B and Erbert G 2009 IEEE J. Quantum Electron. 45 42
[10] Lim J J, Bull S, Kaunga-Nyirenda S, Sujecki S, Larkins E C, Hasler K H and Fricke J 2012 IEEE Photonics Society Summer Topical Meeting Series, Seattle, WA, USA, July 9-11, 2012, pp. 35-36
[11] Kaunga-Nyirenda S N, Bull S, Lim J J, Hasler K H, Fricke J and Larkins E C 2014 IET Optoelectron. 8 99
[12] Helal M A, Nyirenda-Kaunga S N, Bull S and Larkins E C 2017 IEEE High Power Diode Lasers and Systems Conference (HPD), Coventry·United Kingdom, October 11-12, 2017, pp. 25-26
[13] Sujecki S, Borruel L, Wykes J, Moreno P, Sumpf B, Sewell P, Wenzel H, Benson T M, Erbert G, Esquivias I and Larkins E C 2003 IEEE J. Sel. Top. Quantum Electron. 9 823
[14] Borruel L, Odriozola H, Tijero J M G, Esquivias I, Sujecki S and Larkins E C 2008 Opt. Quantum Electron. 40 175
[15] Hou L, Haji M, Akbar J and Marsh J H 2012 Opt. Lett. 37 452
[16] Faugeron M, Vilera M, Krakowski M, Robert Y, Vinet E, Primiani P, Goëc J P L, Parillaud O, Pérez-Serrano A, Tijero J M G, Kochem G, TraubM, Esquivias I and van Dijk F 2015 IEEE Photonics Technol. Lett. 27 1449
[17] Zink C, Maaßdorf A, Fricke J, Ressel P, Sumpf B, Erbert G and Tränkle G 2020 IEEE Photonics Technol. Lett. 32 59
[18] Müller A, Zink C, Fricke J, Bugge F, Erbert G, Sumpf B and Tränkle G 2017 IEEE J. Sel. Top. Quantum Electron. 23 1501107
[19] Crump P, Brox O, Bugge F, Fricke J, Schultz C, Spreemann M, Sumpf B, Wenzel H and Erbert G 2012 Semicond. Semimetals 86 49
[20] Müller A, Fricke J, Brox O, Erbert G and Sumpf B 2016 Semicond. Sci. Technol. 31 125011
[21] Bossert D J, Marciante J R and Wright M W 1995 IEEE Photonics Technol. Lett. 7 470
[22] Adamiec P, Bonilla B, Consoli A, Tijero J M G, Aguilera S and Esquivias I 2012 Appl. Opt. 51 7160
[23] Spreemann M, Lichtner M, Radziunas M, Bandelow U and Wenzel H 2009 IEEE J. Quantum Electron. 45 609
[24] Egan A, Ning C Z, Moloney J V, Indik R A, Wright M W, Bossert D J and McInerney J G 1998 IEEE J. Quantum Electron. 34 166
[25] Kaspari C, Blume G, Feise D, Paschke K, Erbert G and Weyers M 2011 IET Optoelectron. 5 121
[1] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[2] Transverse localization of Tamm plasmon in metal-DBR structure with disordered layer
Deng-Ju He(何登举), Wei-Li Zhang(张伟利), Rui Ma(马瑞), Shan-Shan Wang(王珊珊), Xiao-Min Wu(吴小敏), Yun-Jiang Rao(饶云江). Chin. Phys. B, 2018, 27(8): 087301.
[3] An improved design for AlGaN solar-blind avalanche photodiodes with enhanced avalanche ionization
Yin Tang(汤寅), Qing Cai(蔡青), Lian-Hong Yang(杨莲红), Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2017, 26(3): 038503.
[4] Modified-DBR-based semi-omnidirectional multilayer anti-reflection coating for tandem solar cells
Ali Bahrami, Shahram Mohammadnejad, Nima Jouyandeh Abkenar. Chin. Phys. B, 2014, 23(2): 028803.
[5] Dual-wavelength distributed Bragg reflector semiconductor laser based on composite resonant cavity
Chen Cheng (陈琤), Zhao Ling-Juan (赵玲娟), Qiu Ji-Fang (邱吉芳), Liu Yang (刘扬), Wang Wei (王圩), Lou Cai-Yun (娄采云). Chin. Phys. B, 2012, 21(9): 094208.
[6] Modeling of resistance characteristics of a continuously-graded distributed Bragg reflector in a 980-nm vertical-cavity surface-emitting laser
Huang Meng (黄梦), Wu Jian (吴坚), Cui Huai-Yang (崔怀洋), Qian Jian-Qiang (钱建强), Ning Yong-Qiang (宁永强). Chin. Phys. B, 2012, 21(10): 104207.
No Suggested Reading articles found!