Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 114208    DOI: 10.1088/1674-1056/ac5c30
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Coupling characteristics of laterally coupled gratings with slots

Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉)
State Key Laboratory on High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China
Abstract  Laterally-coupled ridge-waveguide distributed feedback lasers fabricated without epitaxial regrowth steps have the advantages of process simplification and low cost. We present a laterally coupled grating with slots. The slots etched between the ridge and grating area are designed to suppress the lateral diffusion of carriers and to reduce the influence of the aspect-ratio-dependent-etching effect on the grating morphology in the etching process. Moreover, the grating height in this structure can be decreased to lower the aspect ratio significantly, which is advantageous over the conventional laterally coupled ridge waveguide gratings. The effects of five main structural parameters on the coupling characteristics of gratings are studied by MODE Solutions. It is found that varying the lateral width of the grating can be used as an effective way to tune the coupling strength; narrow slots (100 nm and 300 nm) and wide ridge (2 μm-4 μm) promote the stability of grating coupling coefficient and device performance. It is important to note that the grating bottom should be fabricated precisely. The comparative study of carrier distribution and mode field distribution shows that the introduction of narrow slots can strengthen the competitive advantage and stability of the fundamental mode.
Keywords:  Bragg gratings      distributed feedback (DFB) lasers      coupling coefficient      mode field distribution  
Received:  01 November 2021      Revised:  21 February 2022      Accepted manuscript online:  10 March 2022
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61804013, 61804014, and 61805023) and Department of Science and Technology of Jilin Province, China (Grant Nos. 20190302052GX and 20210201030GX).
Corresponding Authors:  Yonggang Zou     E-mail:  zouyg@cust.edu.cn

Cite this article: 

Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉) Coupling characteristics of laterally coupled gratings with slots 2022 Chin. Phys. B 31 114208

[1] Sakai K, Utaka K, Akiba S and Matsushima Y 1982 IEEE J. Quantum Electron 18 1272
[2] Nagai H, Matsuoka T, Noguchi Y, Suzuki Y and Yoshikuni Y 1986 IEEE J. Quantum Electron 22 450
[3] Pozzi F, De La Rue R M and Sorel M 2006 IEEE Photon. Technol. Lett. 18 2563
[4] Kang J H, Wenzel H, Hoffmann V, Freier E, Sulmoni L, Unger R, Einfeldt S, Wernicke T and Kneissl M 2018 IEEE Photon. Technol. Lett. 30 231
[5] Li H, Yang C, Xie S, Huang S, Chai X, Zhang Y, Wang J and Niu Z 2018 J. Infrared Millim. Waves 37 141
[6] Heikki V, Topi U, Maija K, Sanna R, Jukka V and Mihail D 2018 IEEE Photon. Technol. Lett. 30 51
[7] Soda H, Kotaki Y, Sudo H, Ishikawa H, Yamakoshi S and Imai H 1987 IEEE J. Quantum Electron 23 804
[8] Whiteaway J E A, Thompson G H B, Collar A J and Armistead C J 2014 IEEE J. Quantum Electron 25 1261
[9] David K, Morthier G, Vankwikelberge P, Bates R G, Wolf T and Borchert B 1991 IEEE J. Quantum Electron 27 1714
[10] Cui L, Hayat A, Lv L, Xu Z and Zhai T 2021 Crystals 11 749
[1] A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer
Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2022, 31(11): 117601.
[2] Theoretical analysis and experimental validation of radial cascaded composite ultrasonic transducer
Xiao-Yu Wang(王晓宇), Zhi-Xin Yu(余芷欣), Jing Hu(胡静), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(4): 040701.
[3] Study on dispersion characteristics of terahertz waves in helical waveguides
Jin-Hai Sun(孙金海), Shao-Hua Zhang(张少华), Xu-Tao Zhang(张旭涛), He Cai(蔡禾), Yong-Qiang Liu(刘永强), and Zeng-Ming Chao(巢增明)$. Chin. Phys. B, 2020, 29(11): 114301.
[4] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[5] Stoney formula for piezoelectric film/elastic substrate system
Wang-Min Zhou(周旺民), Wang-Jun Li(李望君), Sheng-Yun Hong(洪圣运), Jie Jin(金杰), Shu-Yuan Yin(尹姝媛). Chin. Phys. B, 2017, 26(3): 037701.
[6] Mode stability analysis in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain
Luo Ji-Run (罗积润), Cui Jian (崔健), Zhu Min (朱敏), Guo Wei (郭炜). Chin. Phys. B, 2013, 22(6): 067803.
[7] Two-dimensional non-spatial filtering based on holographic Bragg gratings
He Yan-Lan (何焰蓝), Zheng Hao-Bin (郑浩斌), Tan Ji-Chun (谭吉春), Ding Dao-Yi (丁道一), Zheng Guang-Wei (郑光威), Wang Xiao (王逍)-Dong (王晓东), Wang Xiao (王逍). Chin. Phys. B, 2010, 19(7): 074215.
[8] The relation between composition in laser absorption region and ambient pressure
Yang Bo(杨波), Zhu Jin-Rong(朱金荣), Yang Yan-Nan(杨雁南), Shen Zhong-Hua(沈中华), Lu Jian(陆建), and Ni Xiao-Wu(倪晓武) . Chin. Phys. B, 2008, 17(1): 199-204.
[9] Influence of air pressure on mechanical effect of laser plasma shock wave
Zhang Yu-Zhu(章玉珠), Wang Guang-An(王广安), Zhu Jin-Rong(朱金荣), Shen Zhong-Hua(沈中华), Ni Xiao-Wu(倪晓武), and Lu Jian(陆建). Chin. Phys. B, 2007, 16(9): 2752-2756.
No Suggested Reading articles found!