Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 100505    DOI: 10.1088/1674-1056/ac8f34
GENERAL Prev   Next  

Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers

Zhi-Wei Jia(贾志伟)1,2, Li Li(李丽)1, Yi-Yan Guo(郭一岩)1, An-Bang Wang(王安帮)1,†, Hong Han(韩红)1, Jin-Chuan Zhang(张锦川)2, Pu Li(李璞)1, Shen-Qiang Zhai(翟慎强)2, and Feng-Qi Liu(刘峰奇)2
1. Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China;
2. Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  Dynamic states in mutual-coupled mid-infrared quantum cascade lasers (QCLs) were numerically investigated in the parameter space of injection strength and detuning frequency based on the Lang—Kobayashi equations model. Three types of period-one states were found, with different periods of injection time delay τinj, 2τinj, and reciprocal of the detuning frequency. Besides, square-wave, quasi-period, pulse-burst and chaotic oscillations were also observed. It is concluded that external-cavity periodic dynamics and optical modes beating are the mainly periodic dynamics. The interaction of the two periodic dynamics and the high-frequency dynamics stimulated by strong injection induces the dynamic states evolution. This work helps to understand the dynamic behaviors in QCLs and shows a new way to mid-infrared wide-band chaotic laser.
Keywords:  periodic oscillations      chaotic oscillations      mutual-coupled quantum cascade lasers  
Received:  21 April 2022      Revised:  09 August 2022      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  42.55.Px (Semiconductor lasers; laser diodes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB1803500), the National Natural Science Foundation of China (Grant No. 61805168), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201801D221183 and 20210302123185), International Cooperation of Key Research and Development Program of Shanxi Province (Grant No. 201903D421012), Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2021-032), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2019L0133), and Fund for Shanxi “1331 Project” Key Innovative Research Team.
Corresponding Authors:  An-Bang Wang     E-mail:  wanganbang@tyut.edu.cn

Cite this article: 

Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇) Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers 2022 Chin. Phys. B 31 100505

[1] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553
[2] Liu Y H, Zhang J C, Yan F L, Jia Z W, Liu F Q, Liang P, Zhuo N, Zhai S Q, Wang L J, Liu J Q, Liu S M and Wang Z G 2016 Opt. Exp. 24 19545
[3] Vitiello M S, Scalari G, Williams B and Natale P De 2015 Opt. Exp. 23 5167
[4] Wang H, Zhang J C, Cheng F M, Zhuo N, Zhai S Q, Liu J Q, Wang L J, Liu S M, Liu F Q and Wang Z G 2020 Opt. Exp. 28 40155
[5] Fei T, Zhai S Q, Zhang J C, Zhuo N, Liu J Q, Wang L J, Liu S M, Jia Z W, Li K and Sun Y Q 2021 J. Semicond. 42 112301
[6] Liu C W, Zhai S Q, Zhang J C, Zhou Y H, Jia Z W, Liu F Q and Wang Z G 2015 J. Semicond. 36 094009
[7] Spitz O, Didier P, Durupt L, Díaz-Thomas D A, Baranov A N, Cerutti L and Grillot F 2021 J. Select. Topics Quantum Electron 28 1200109
[8] Pang X D, Ozolins O, Schatz R, Storck J, Udalcovs A, Navarro J R, Kakkar A, Maisons G, Carras M and Jacobsen G 2017 Opt. Lett. 42 3646
[9] Paschke K, Liu P Q, Michel A P, Smith J, Moshary F and Gmachl C 2010 Conference on Lasers and Electro-Optics, May 16—21, 2010, San Jose, California United States, p. JThJ3
[10] Gregorio E and Rocadenbosch F 2007 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 23—27, 2007, Barcelona, Spain, p. 2955
[11] Chien H T, Wang K, Sheen S H and Raptis A C P 2012 Conference on Chemical, Biological, Radiological, Nuclear and Explosives (CBRNE) Sensing XIII, April 24—27, 2012, Baltimore, Maryland, p. 83581K
[12] Abramov P I, Kuznetsov E V and Skvortsov L A 2017 J. Opt. Technol. 84 331
[13] Langley L N, Turovets S and Shore K A 1995 Opt. Lett. 20 725
[14] Eriksson S and Lindberg Å M 2001 Opt. Lett. 26 142
[15] Sciamanna M and Shore K A 2015 Nat. Photonics 9 151
[16] Soriano M C, García-Ojalvo J, Mirasso C R and Fischer I 2013 Rev. Mod. Phys. 85 421
[17] Mork J, Tromborg B and Christiansen P L 1988 IEEE J Quantum Electron 24 123
[18] Yamasaki K, Kanno K, Matsumoto A, Akahane K, Yamamoto N, Naruse M and Uchida A 2021 Opt. Exp. 29 17962
[19] Azouigui S, Kelleher B, Hegarty S P, Huyet G, Dagens B, Lelarge F, Accard A, Make D, Le Gouezigou O and Merghem K 2007 Opt. Exp. 15 14155
[20] Heil T, Fischer I, Elsäßer W and Gavrielides A 2001 Phys. Rev. Lett. 87 243901
[21] Liu S, Lalanne E, Kuis R and Johnson A 2009 Frontiers in Optics, October 11—15, 2009, San Jose, California United States, p. PDPA3
[22] Jumpertz L, Michel F, Pawlus R, Elsässer W, Schires K, Carras M and Grillot F 2016 AIP Adv. 6 015212
[23] Mezzapesa F P, Columbo L L, Brambilla M, Dabbicco M, Borri S, Vitiello M S, Beere H E, Ritchie D A and Scamarcio G 2013 Opt. Exp. 21 13748
[24] Jumpertz L, Schires K, Carras M, Sciamanna M and Grillot F 2016 Light Sci. Appl. 5 e16088
[25] Wang X G, Zhao B B, Deng Y, Kovanis V and Wang C 2021 Phys Rev A. 103 023528
[26] Zhao B B, Wang X G and Wang C 2022 J. Select. Topics Quantum Electron 28 1800207
[27] Zhao B B, Kovanis V and Wang C 2019 J. Select. Topics Quantum Electron 25 1900207
[28] Vukovic N N, Radovanovic J V, Milanovic V B, Antonov A V, Kuritsyn D I, Vaks V V and Boiko D L 2019 arXiv: 1902.00205
[29] Chen C J, Jia Z W, Lv Y X, Li P, Xu B J and Wang Y C 2021 Opt. Lett. 46 5039
[30] Paiella R, Martini R, Capasso F, Gmachl C, Hwang H Y, Sivco D L, Baillargeon J N, Cho A Y, Whittaker E A and Liu H C 2001 Appl. Phys. Lett. 79 2526
[31] Kuwashima F and Iwasawa H 2007 Jpn. J. Appl. Phys. 46 1526
[32] Zhang T, Jia Z W, Wang A B, Hong Y H, Wang L S, Guo Y Y and Wang Y C 2021 IEEE Photon. Technol. Lett. 33 335
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[7] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[10] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[11] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[12] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[13] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[14] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[15] Negative self-feedback induced enhancement and transition of spiking activity for class-3 excitability
Li Li(黎丽), Zhiguo Zhao(赵志国), and Huaguang Gu(古华光). Chin. Phys. B, 2022, 31(7): 070506.
No Suggested Reading articles found!