1 Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China; 2 School of Computer Science, Jiangxi University of Chinese Medicine, Nanchang 330004, China
Abstract We investigate the band structure and Goos-Hänchen-like shift in ferromagnetic mass graphene junction modulated by the circularly polarized light. It is found that both spin and valley-related energy gaps can be opened by employing the circularly polarized light and the exchange field in mass graphene. The valley-polarized Goos-Hänchen-like shift can be identified in the presence of circularly polarized light, and the spin-polarized Goos-Hänchen-like shift can be realized with introduction of exchange field in mass graphene. Furthermore, the spin and valley polarization-related Goos-Hänchen-like shift can be achieved by combination of circularly polarized light and exchange field in mass graphene. It is hopeful that our work will be more conducive for future applications in graphene polarization transport devices.
Fund: Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20224BAB201025 and 20202BABL201018), and the National Natural Science Foundation of China (Grant Nos. 11864012, 11764013, and 12164021).
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍) Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light 2023 Chin. Phys. B 32 037301
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science306 666 [2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature438 201 [3] Beenakker, C 2008 Rev. Mod. Phys.80 1337 [4] Neto A C, Guinea F, Peres N M, Novoselov K S and Geim A K 2009 Rev. Mod. Phys.81 109 [5] Schwierz F 2010 Nat. Nanotech.5 487 [6] Xia F, Mueller T, Lin Y, Valdes-Garcia A and Avouris P 2009 Nat. Nanotech.4 839 [7] Wu Z, Zhai F, Peeters F, Xu H and Chang K 2011 Phys. Rev. Lett.106 176802 [8] Beenakker C W J, Sepkhanov R A, Akhmerov A R and Tworzydlo J 2009 Phys. Rev. Lett.102 146804 [9] Darancet P, Olevano V and Mayou D 2009 Phys. Rev. Lett.102 136803 [10] Park C H, Son Y, Yang L, Cohen M L and Louie S G 2008 Nano Lett.8 2920 [11] Cheianov V V, Fal'ko V and Altshuler B L 2007 Science315 1252 [12] Goos F and Hänchen H 1947 Ann. Phys.436 333 [13] Goos F and Lindberg-Hänchen H 1949 Ann. Phys.440 251 [14] Artmann K 1948 Ann. Phys.437 87 [15] Guo Y, Singh N M, Das C M, Ouyang Q, Kang L, Li K, Coquet P and Yong K T 2020 Plasmonics15 1815 [16] Wang X P, Yin C, Sun J J, Li H G, Wang Y, Ran M W and Cao Z Q 2013 Opt. Express21 13380 [17] Yin X and Hesselink L 2006 Appl. Phys. Lett.89 261108 [18] Sakata T, Togo H and Shimokawa F 2000 Appl. Phys. Lett.76 2841 [19] Soni J, Mansha S, Gupta S D, Banerjee A and Ghosh N 2014 Opt. Lett.39 4100 [20] Lee S Y, Le Deunff J, Choi M and Ketzmerick R 2014 Phys. Rev. A89 022120 [21] Soboleva I V, Moskalenko V V and Fedyanin A A 2012 Phys. Rev. Lett.108 123901 [22] Grosche S, Ornigotti M and Szameit A 2015 Opt. Express23 30195 [23] Moradi A 2018 Europhys. Lett.120 67002 [24] Chen S, Mi C, Cai L, Liu M, Luo H and Wen S 2017 Appl. Phys. Lett.110 031105 [25] Cheng M 2012 Eur. Phys. J. B85 1 [26] Chen X, Tao J W and Ban Y 2011 Eur. Phys. J. B79 203 [27] Jellal A, Redouani I, Zahidi Y and Bahlouli H 2014 Physica E58 30 [28] Chen X, Zhao P L and Lu X J 2013 Eur. Phys. J. B86 1 [29] Cao Z Z, Cheng Y F and Li G Q 2011 Physica B407 4254 [30] Stigloher J, Taniguchi T, Körner H, Decker M, Moriyama T, Ono T and Back C H 2018 Phys. Rev. Lett.121 137201 [31] Wu Q P, Liu Z F, Chen A X, Xiao X B and Liu Z M 2014 Appl. Phys. Lett.105 252402 [32] Chang L L, Wu Q P, Li Y Z, Zhang R L, Liu M R, Li,W Y, Liu F F, Xiao X B and Liu Z F 2021 Physica E130 114681 [33] Sachs B, Wehling T O, Katsnelson M I and Lichtenstein A I 2011 Phys. Rev. B84 195414 [34] Haugen Hå, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B77 115406 [35] Wu Q P, Liu Z F, Chen A X, Xiao X B and Miao G X 2017 J. Appl. Phys.121 053906 [36] Liu M R, Liu Z F, Zhang R L, Xiao X B and Wu Q P 2021 Chin. Phys. B30 107302 [37] Zhou X, Xu Y and Jin G 2015 Phys. Rev. B92 235436 [38] Xiao D, Liu G B, Feng W, Xu X and Yao Wang 2012 Phys. Rev. Lett.108 196802 [39] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B77 235406 [40] Masir M R, Vasilopoulos P, Matulis A and Peeters F 2008 Phys. Rev. B77 235443 [41] Wang L G and Zhu S Y 2010 Phys. Rev. B81 205444 [42] Bercioux D and De M A 2010 Phys. Rev. B81 165410 [43] Mekkaoui M, Jellal A and Bahlouli H 2019 Physica E111 218 [44] Ghadiri H and Saffarzadeh A 2017 J. Phys.: Condens. Matter29 115303
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.