Special Issue:
TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
|
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B |
Prev
Next
|
|
|
Quantum simulation and quantum computation of noisy-intermediate scale |
Kai Xu(许凯)1,2,3,4,5,†, and Heng Fan(范桁)1,2,3,4,5,‡ |
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. Beijing Academy of Quantum Information Sciences, Beijing 100190, China; 3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 4. CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 5. Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract In the past years, great progresses have been made on quantum computation and quantum simulation. Increasing the number of qubits in the quantum processors is expected to be one of the main motivations in the next years, while noises in manipulation of quantum states may still be inevitable even the precision will improve. For research in this direction, it is necessary to review the available results about noisy multiqubit quantum computation and quantum simulation. The review focuses on multiqubit state generations, quantum computational advantage, and simulating physics of quantum many-body systems. Perspectives of near term noisy intermediate-quantum processors will be discussed.
|
Received: 13 June 2022
Revised: 12 August 2022
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: This work is supported in part by the National Natural Science Foundation of China (Grant Nos. 11934018, T2121001, 11904393, and 92065114), the CAS Strategic Priority Research Program (Grant No. XDB28000000), Beijing Natural Science Foundation (Grant No. Z200009), and Scientific Instrument Developing Project of Chinese Academy of Sciences (Grant No. YJKYYQ20200041). |
Corresponding Authors:
Kai Xu, Heng Fan
E-mail: kaixu@iphy.ac.cn;hfan@iphy.ac.cn
|
Cite this article:
Kai Xu(许凯), and Heng Fan(范桁) Quantum simulation and quantum computation of noisy-intermediate scale 2022 Chin. Phys. B 31 100304
|
[1] Preskill J 2018 Quantum 2 79 [2] Arute F and Arya K, Babbush R, et al. 2019 Nature 574 505 [3] Wu Y and Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501 [4] Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A, Endres M, Greiner M, Vuletic V and Lukin M 2017 Nature 551 579 [5] Zhang J, Pagano G, Hess P, Kyprianidis A, Becker P, Kaplan H, Gorshkov A, Gong Z X and Monroe C 2017 Nature 551 601 [6] Guo Q, Cheng C, Sun Z H, Song Z, Li H, Wang Z, Ren W, Dong H, Zheng D, Zhang Y R, Mondaini R, Fan H and Wang H 2021 Nat. Phys. 17 234 [7] Guo Q, Cheng C, Li H, Xu S, Zhang P, Wang Z, Song C, Liu W, Ren W, Dong H, Mondaini R and Wang H 2021 Phys. Rev. Lett. 127 240502 [8] Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D and Fan H 2018 Phys. Rev. Lett. 120 050507 [9] Aspuru-Guzik A, Dutoi A D, Love P J and Head-Gordon M 2005 Science 309 1704 [10] Liu J, Lim K H, Wood K, Huang W, Chu G and Huang H L 2021 Sci. China Phys. Mech. Astron. 64 290311 [11] Cong I, Choi S and Lukin M 2019 Nat. Phys. 15 1273 [12] Lloyd S and Weedbrook C 2018 Phys. Rev. Lett. 121 040502 [13] Huang K, Wang Z A, Song C, Xu K, Li H, Wang Z, Guo Q, Song Z, Liu Z B, Zheng D, Deng D L, Wang H, Tian J G and Fan H 2021 NPJ Quantum Inf. 7 165 [14] Feynman R P 1982 Int. J. Theor. Phys. 21 467 [15] Wu X, Liang X, Tian Y, Yang F, Chen C, Liu Y C, Tey M K and You L 2021 Chin. Phys. B 30 020305 [16] Chen W, Gan J, Zhang J N, Matuskevich D and Kim K 2021 Chin. Phys. B 30 060311 [17] Preskill J 2012 arXiv: 1203.5813v3 [quant-ph] [18] Aaronson S and Arkhipov A 2010 Proceedings of the Annual ACM Symposium on Theory of Computing 9 333 [19] Zhong H S and Wang H, Deng Y H, et al. 2020 Science 370 1460 [20] Pan F and Zhang P 2022 Phys. Rev. Lett. 128 030501 [21] Pan F, Chen K and Zhang P 2021 arXiv: 2111.03011v1 [quant-ph] [22] Smith J, Lee A, Richerme P, Neyenhuis B, Hess P, Hauke P, Heyl M, Huse D and Monroe C 2016 Nat. Phys. 12 907 [23] Choi J Y, Hild S, Zeiher J, Schauß P, Rubio-Abadal A, Yefsah T, Khemani V, Huse D A, Bloch I and Gross C 2016 Science 352 1547 [24] Nandkishore R and Huse D A 2015 Annu. Rev. Condens. 6 15 [25] Brydges T, Elben A, Jurcevic P, Vermersch B, Maier C, Lanyon B P, Zoller P, Blatt R and Roos C F 2019 Science 364 260 [26] Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J and Greiner M 2019 Science 364 256 [27] Song C, Xu K, Li H, Zhang Y R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J, Feng H, Fan H, Zheng D, Wang D W, Wang H and Zhu S Y 2019 Science 365 574 [28] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188 [29] Huang H L, Wu D, Fan D and Zhu X 2020 Sci. China Inf. Sci. 63 180501 [30] Hao S, Deng X, Liu Y, Su X, Xie C and Peng K 2021 Chin. Phys. B 30 060312 [31] He K, Geng X, Huang R, Liu J and Chen W 2021 Chin. Phys. B 30 080304 [32] Song C, Xu K, Liu W, Yang C P, Zheng S B, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen Y A, Lu C Y, Han S and Pan J W 2017 Phys. Rev. Lett. 119 180511 [33] Gühne O and Tóth G 2009 Phys. Rep. 474 1 [34] Wei K X, Lauer I, Srinivasan S, Sundaresan N, McClure D T, Toyli D, McKay D C, Gambetta J M and Sheldon S 2020 Phys. Rev. A 101 032343 [35] Omran A, Levine H, Keesling A, Semeghini G, Wang T T, Ebadi S, Bernien H, Zibrov A S, Pichler H, Choi S, Cui J, Rossignolo M, Rembold P, Montangero S, Calarco T, Endres M, Greiner M, Vuletić V and Lukin M D 2019 Science 365 570 [36] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hänsel W, Hennrich M and Blatt R 2011 Phys. Rev. Lett. 106 130506 [37] Zhong H S, Li Y, Li W, Peng L C, Su Z E, Hu Y, He Y M, Ding X, Zhang W, Li H, Zhang L, Wang Z, You L, Wang X L, Jiang X, Li L, Chen Y A, Liu N L, Lu C Y and Pan J W 2018 Phys. Rev. Lett. 121 250505 [38] Wang X L, Luo Y H, Huang H L, Chen M C, Su Z E, Liu C, Chen C, Li W, Fang Y Q, Jiang X, Zhang J, Li L, Liu N L, Lu C Y and Pan J W 2018 Phys. Rev. Lett. 120 260502 [39] Luo X Y, Zou Y Q, Wu L N, Liu Q, Han M F, Tey M K and You L 2017 Science 355 620 [40] Xu K, Sun Z H, Liu W, Zhang Y R, Li H, Dong H, Ren W, Zhang P, Nori F, Zheng D, Fan H and Wang H 2020 Sci. Adv. 6 eaba4935 [41] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222 [42] Caves C M 1981 Phys. Rev. D 23 1693 [43] Gessner M, Smerzi A and Pezzè L 2019 Phys. Rev. Lett. 122 090503 [44] Xu K, Zhang Y R, Sun Z H, Li H, Song P, Xiang Z, Huang K, Li H, Shi Y H, Chen C T, Song X, Zheng D, Nori F, Wang H and Fan H 2022 Phys. Rev. Lett. 128 150501 [45] Chen C T, Shi Y H, Xiang Z C, Wang Z A, Li T M, Sun H Y, He T S, Song X H, Zhao S P, Zheng D, Xu K and Fan H 2022 arXiv: 2203.03000v1 [quant-ph] |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|