Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 100304    DOI: 10.1088/1674-1056/ac89de
Special Issue: TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B Prev   Next  

Quantum simulation and quantum computation of noisy-intermediate scale

Kai Xu(许凯)1,2,3,4,5,†, and Heng Fan(范桁)1,2,3,4,5,‡
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. Beijing Academy of Quantum Information Sciences, Beijing 100190, China;
3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
4. CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
5. Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  In the past years, great progresses have been made on quantum computation and quantum simulation. Increasing the number of qubits in the quantum processors is expected to be one of the main motivations in the next years, while noises in manipulation of quantum states may still be inevitable even the precision will improve. For research in this direction, it is necessary to review the available results about noisy multiqubit quantum computation and quantum simulation. The review focuses on multiqubit state generations, quantum computational advantage, and simulating physics of quantum many-body systems. Perspectives of near term noisy intermediate-quantum processors will be discussed.
Keywords:  quantum computation      quantum simulation      many-body physics      quantum supremacy      noisy intermediate-scale quantum technologies  
Received:  13 June 2022      Revised:  12 August 2022      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Bg (Entanglement production and manipulation)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: This work is supported in part by the National Natural Science Foundation of China (Grant Nos. 11934018, T2121001, 11904393, and 92065114), the CAS Strategic Priority Research Program (Grant No. XDB28000000), Beijing Natural Science Foundation (Grant No. Z200009), and Scientific Instrument Developing Project of Chinese Academy of Sciences (Grant No. YJKYYQ20200041).
Corresponding Authors:  Kai Xu, Heng Fan     E-mail:;

Cite this article: 

Kai Xu(许凯), and Heng Fan(范桁) Quantum simulation and quantum computation of noisy-intermediate scale 2022 Chin. Phys. B 31 100304

[1] Preskill J 2018 Quantum 2 79
[2] Arute F and Arya K, Babbush R, et al. 2019 Nature 574 505
[3] Wu Y and Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501
[4] Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A, Endres M, Greiner M, Vuletic V and Lukin M 2017 Nature 551 579
[5] Zhang J, Pagano G, Hess P, Kyprianidis A, Becker P, Kaplan H, Gorshkov A, Gong Z X and Monroe C 2017 Nature 551 601
[6] Guo Q, Cheng C, Sun Z H, Song Z, Li H, Wang Z, Ren W, Dong H, Zheng D, Zhang Y R, Mondaini R, Fan H and Wang H 2021 Nat. Phys. 17 234
[7] Guo Q, Cheng C, Li H, Xu S, Zhang P, Wang Z, Song C, Liu W, Ren W, Dong H, Mondaini R and Wang H 2021 Phys. Rev. Lett. 127 240502
[8] Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D and Fan H 2018 Phys. Rev. Lett. 120 050507
[9] Aspuru-Guzik A, Dutoi A D, Love P J and Head-Gordon M 2005 Science 309 1704
[10] Liu J, Lim K H, Wood K, Huang W, Chu G and Huang H L 2021 Sci. China Phys. Mech. Astron. 64 290311
[11] Cong I, Choi S and Lukin M 2019 Nat. Phys. 15 1273
[12] Lloyd S and Weedbrook C 2018 Phys. Rev. Lett. 121 040502
[13] Huang K, Wang Z A, Song C, Xu K, Li H, Wang Z, Guo Q, Song Z, Liu Z B, Zheng D, Deng D L, Wang H, Tian J G and Fan H 2021 NPJ Quantum Inf. 7 165
[14] Feynman R P 1982 Int. J. Theor. Phys. 21 467
[15] Wu X, Liang X, Tian Y, Yang F, Chen C, Liu Y C, Tey M K and You L 2021 Chin. Phys. B 30 020305
[16] Chen W, Gan J, Zhang J N, Matuskevich D and Kim K 2021 Chin. Phys. B 30 060311
[17] Preskill J 2012 arXiv: 1203.5813v3 [quant-ph]
[18] Aaronson S and Arkhipov A 2010 Proceedings of the Annual ACM Symposium on Theory of Computing 9 333
[19] Zhong H S and Wang H, Deng Y H, et al. 2020 Science 370 1460
[20] Pan F and Zhang P 2022 Phys. Rev. Lett. 128 030501
[21] Pan F, Chen K and Zhang P 2021 arXiv: 2111.03011v1 [quant-ph]
[22] Smith J, Lee A, Richerme P, Neyenhuis B, Hess P, Hauke P, Heyl M, Huse D and Monroe C 2016 Nat. Phys. 12 907
[23] Choi J Y, Hild S, Zeiher J, Schauß P, Rubio-Abadal A, Yefsah T, Khemani V, Huse D A, Bloch I and Gross C 2016 Science 352 1547
[24] Nandkishore R and Huse D A 2015 Annu. Rev. Condens. 6 15
[25] Brydges T, Elben A, Jurcevic P, Vermersch B, Maier C, Lanyon B P, Zoller P, Blatt R and Roos C F 2019 Science 364 260
[26] Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J and Greiner M 2019 Science 364 256
[27] Song C, Xu K, Li H, Zhang Y R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J, Feng H, Fan H, Zheng D, Wang D W, Wang H and Zhu S Y 2019 Science 365 574
[28] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[29] Huang H L, Wu D, Fan D and Zhu X 2020 Sci. China Inf. Sci. 63 180501
[30] Hao S, Deng X, Liu Y, Su X, Xie C and Peng K 2021 Chin. Phys. B 30 060312
[31] He K, Geng X, Huang R, Liu J and Chen W 2021 Chin. Phys. B 30 080304
[32] Song C, Xu K, Liu W, Yang C P, Zheng S B, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen Y A, Lu C Y, Han S and Pan J W 2017 Phys. Rev. Lett. 119 180511
[33] Gühne O and Tóth G 2009 Phys. Rep. 474 1
[34] Wei K X, Lauer I, Srinivasan S, Sundaresan N, McClure D T, Toyli D, McKay D C, Gambetta J M and Sheldon S 2020 Phys. Rev. A 101 032343
[35] Omran A, Levine H, Keesling A, Semeghini G, Wang T T, Ebadi S, Bernien H, Zibrov A S, Pichler H, Choi S, Cui J, Rossignolo M, Rembold P, Montangero S, Calarco T, Endres M, Greiner M, Vuletić V and Lukin M D 2019 Science 365 570
[36] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hänsel W, Hennrich M and Blatt R 2011 Phys. Rev. Lett. 106 130506
[37] Zhong H S, Li Y, Li W, Peng L C, Su Z E, Hu Y, He Y M, Ding X, Zhang W, Li H, Zhang L, Wang Z, You L, Wang X L, Jiang X, Li L, Chen Y A, Liu N L, Lu C Y and Pan J W 2018 Phys. Rev. Lett. 121 250505
[38] Wang X L, Luo Y H, Huang H L, Chen M C, Su Z E, Liu C, Chen C, Li W, Fang Y Q, Jiang X, Zhang J, Li L, Liu N L, Lu C Y and Pan J W 2018 Phys. Rev. Lett. 120 260502
[39] Luo X Y, Zou Y Q, Wu L N, Liu Q, Han M F, Tey M K and You L 2017 Science 355 620
[40] Xu K, Sun Z H, Liu W, Zhang Y R, Li H, Dong H, Ren W, Zhang P, Nori F, Zheng D, Fan H and Wang H 2020 Sci. Adv. 6 eaba4935
[41] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[42] Caves C M 1981 Phys. Rev. D 23 1693
[43] Gessner M, Smerzi A and Pezzè L 2019 Phys. Rev. Lett. 122 090503
[44] Xu K, Zhang Y R, Sun Z H, Li H, Song P, Xiang Z, Huang K, Li H, Shi Y H, Chen C T, Song X, Zheng D, Nori F, Wang H and Fan H 2022 Phys. Rev. Lett. 128 150501
[45] Chen C T, Shi Y H, Xiang Z C, Wang Z A, Li T M, Sun H Y, He T S, Song X H, Zhao S P, Zheng D, Xu K and Fan H 2022 arXiv: 2203.03000v1 [quant-ph]
[1] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[2] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[3] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[4] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[5] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[6] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[7] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[8] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[9] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[10] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[11] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[12] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[13] Efficient self-testing system for quantum computations based on permutations
Shuquan Ma(马树泉), Changhua Zhu(朱畅华), Min Nie(聂敏), and Dongxiao Quan(权东晓). Chin. Phys. B, 2021, 30(4): 040305.
[14] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[15] Review of quantum simulation based on Rydberg many-body system
Zheng-Yuan Zhang(张正源), Dong-Sheng Ding(丁冬生), and Bao-Sen Shi(史保森). Chin. Phys. B, 2021, 30(2): 020307.
No Suggested Reading articles found!