|
|
Unified approach to various quantum Rabi models witharbitrary parameters |
Xiao-Fei Dong(董晓菲)1, You-Fei Xie(谢幼飞)1, Qing-Hu Chen(陈庆虎)1,2 |
1 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China; 2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract A general approach is proposed to the quantum Rabi model and its several variants within the extended coherent states. The solutions to all these models including the anisotropy and the nonlinear Stark coupling are then obtained in an unified way. The essential characteristics such as the possible first-order phase transition can be detected analytically. This approach can be easily applied to the recent experiments with various tunable parameters without much additional effort, so it should be very helpful to the analysis of the experimental data.
|
Received: 27 November 2019
Accepted manuscript online:
|
PACS:
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
02.30.Ik
|
(Integrable systems)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11834005 and 11674285). |
Corresponding Authors:
Qing-Hu Chen
E-mail: qhchen@zju.edu.cn
|
Cite this article:
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎) Unified approach to various quantum Rabi models witharbitrary parameters 2020 Chin. Phys. B 29 020302
|
[1] |
Rabi I I 1937 Phys. Rev. 51 652
|
[2] |
Jaynes E T and Cummings F W 1963 IEEE Proc. 51 89
|
[3] |
Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
|
[4] |
Orszag M 2007 Quantum Optics Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence (Science Publish)
|
[5] |
Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Humer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
|
[6] |
Forn-D Píaz, Lisenfeld J, Marcos D, Garca-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
|
[7] |
Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, and Semba K 2016 Nat. Phys. 13 44
|
[8] |
Forn-D Píaz, García-Ripoll J J, Peropadre B, Orgiazzi J L, Yurtalan M A, Belyansky R, Wilson C M and Lupascu A 2016 Nat. Phys. 13 39
|
[9] |
Casanova J, Romero G, Lizuain I, García-Ripoll J J and Solano E 2010 Phys. Rev. Lett. 105 263603
|
[10] |
Braak D 2011 Phys. Rev. Lett. 107 100401
|
[11] |
Chen Q H, Wang C, He S, Liu T and Wang K L 2012 Phys. Rev. A 86 023822
|
[12] |
He S, Wang C, Chen Q H, Ren X Z, Liu T and Wang K L 2012 Phys. Rev. A 86 033837
|
[13] |
He S, Zhao Y and Chen Q H 2014 Phys. Rev. A 90 053848
|
[14] |
Zhong H H, Xie Q T, Batchelor M and Lee C H 2013 J. Phys. A 46 415302
|
[15] |
Maciejewski A J, Przybylska M and Stachowiak T 2014 Phys. Lett. A 378 3445
|
[16] |
Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801
|
[17] |
Gan C J and Zheng H 2010 Eur. Phys. J. D 59 473
|
[18] |
Ying Z J, Liu M X, Luo H G, Lin H Q and You J Q 2015 Phys. Rev. A 92 053823
|
[19] |
Hwang M J, Puebla R and Plenio M B 2015 Phys. Rev. Lett. 115 180404
|
[20] |
Liu M X, Chesi S, Ying Z J, Chen X S, Luo H G and Lin H Q 2017 Phys. Rev. Lett. 119 220601
|
[21] |
Braak D, Chen Q H, Batchelor M and Solano E 2016 J. Phys. A: Math. Gen. 49 300301
|
[22] |
Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718-719 1
|
[23] |
Forn-Díaz P, Lamata L, Rico E, Kono J and Solano E 2019 Rev. Mod. Phys. 91 25005
|
[24] |
Yu Y X, Ye J and Liu W M 2013 Sci. Rep. 3 3476
|
[25] |
Xie Q T, Cui S, Cao J P, Amico L and Fan H 2014 Phys. Rev. X 4 021046
|
[26] |
Tomka M, Araby O. E, Pletyukhov M and Gritsev V 2014 Phys. Rev. A 90 063839
|
[27] |
Erlingsson S I, Egues J C and Loss D 2010 Phys. Rev. B 82 155456
|
[28] |
Schiroa M, Bordyuh M, Otu ztop B and Tureci H E 2012 Phys. Rev. Lett. 109 053601
|
[29] |
Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
|
[30] |
Grimsmo A L and Parkins S 2013 Phys. Rev. A 87 033814
|
[31] |
Grimsmo A L and Parkins S 2014 Phys. Rev. A 89 033802
|
[32] |
Eckle H P and Johannesson H 2017 J. Phys. A: Math. Theor. 50 294004
|
[33] |
Xie Y F, Duan L W and Chen Q H 2019 J. Phys. A: Math. Theor. 52 245304
|
[34] |
Xie Y F and Chen Q H 2019 Commun. Theor. Phys. 71 623
|
[35] |
Cong L, Felicetti S, Casanova J, Lamata L, Solano E and Arrazola I 2019 arXiv:1908.07358
|
[36] |
Zhang Z Q, Lee C H, Kumar R, Arnold K J, Masson S J, Grimsmo A L, Parkins A S and Barrett M D 2018 Phys. Rev. A 97 043858
|
[37] |
Xie Q T, Zhong H H, Batchelor M T and Lee C H 2016 J. Phys. A: Math. Theor. 50 113001
|
[38] |
Chen Q H, Liu T, Zhang Y Y and Wang K L 2011 Europhys. Lett. 96 14003
|
[39] |
Feranchuk I D, Komarov L I and Ulyanenkov A P 1996 J. Phys. A 29 4035
|
[40] |
Irish E K 2007 Phys. Rev. Lett. 99 173601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|