Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 020302    DOI: 10.1088/1674-1056/ab6555
GENERAL Prev   Next  

Unified approach to various quantum Rabi models witharbitrary parameters

Xiao-Fei Dong(董晓菲)1, You-Fei Xie(谢幼飞)1, Qing-Hu Chen(陈庆虎)1,2
1 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  A general approach is proposed to the quantum Rabi model and its several variants within the extended coherent states. The solutions to all these models including the anisotropy and the nonlinear Stark coupling are then obtained in an unified way. The essential characteristics such as the possible first-order phase transition can be detected analytically. This approach can be easily applied to the recent experiments with various tunable parameters without much additional effort, so it should be very helpful to the analysis of the experimental data.
Keywords:  exact solutions      quantum Rabi models      circuit QED      anisotropy  
Received:  27 November 2019      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Ik (Integrable systems)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11834005 and 11674285).
Corresponding Authors:  Qing-Hu Chen     E-mail:  qhchen@zju.edu.cn

Cite this article: 

Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎) Unified approach to various quantum Rabi models witharbitrary parameters 2020 Chin. Phys. B 29 020302

[1] Rabi I I 1937 Phys. Rev. 51 652
[2] Jaynes E T and Cummings F W 1963 IEEE Proc. 51 89
[3] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[4] Orszag M 2007 Quantum Optics Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence (Science Publish)
[5] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Humer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
[6] Forn-D Píaz, Lisenfeld J, Marcos D, Garca-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
[7] Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, and Semba K 2016 Nat. Phys. 13 44
[8] Forn-D Píaz, García-Ripoll J J, Peropadre B, Orgiazzi J L, Yurtalan M A, Belyansky R, Wilson C M and Lupascu A 2016 Nat. Phys. 13 39
[9] Casanova J, Romero G, Lizuain I, García-Ripoll J J and Solano E 2010 Phys. Rev. Lett. 105 263603
[10] Braak D 2011 Phys. Rev. Lett. 107 100401
[11] Chen Q H, Wang C, He S, Liu T and Wang K L 2012 Phys. Rev. A 86 023822
[12] He S, Wang C, Chen Q H, Ren X Z, Liu T and Wang K L 2012 Phys. Rev. A 86 033837
[13] He S, Zhao Y and Chen Q H 2014 Phys. Rev. A 90 053848
[14] Zhong H H, Xie Q T, Batchelor M and Lee C H 2013 J. Phys. A 46 415302
[15] Maciejewski A J, Przybylska M and Stachowiak T 2014 Phys. Lett. A 378 3445
[16] Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801
[17] Gan C J and Zheng H 2010 Eur. Phys. J. D 59 473
[18] Ying Z J, Liu M X, Luo H G, Lin H Q and You J Q 2015 Phys. Rev. A 92 053823
[19] Hwang M J, Puebla R and Plenio M B 2015 Phys. Rev. Lett. 115 180404
[20] Liu M X, Chesi S, Ying Z J, Chen X S, Luo H G and Lin H Q 2017 Phys. Rev. Lett. 119 220601
[21] Braak D, Chen Q H, Batchelor M and Solano E 2016 J. Phys. A: Math. Gen. 49 300301
[22] Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718-719 1
[23] Forn-Díaz P, Lamata L, Rico E, Kono J and Solano E 2019 Rev. Mod. Phys. 91 25005
[24] Yu Y X, Ye J and Liu W M 2013 Sci. Rep. 3 3476
[25] Xie Q T, Cui S, Cao J P, Amico L and Fan H 2014 Phys. Rev. X 4 021046
[26] Tomka M, Araby O. E, Pletyukhov M and Gritsev V 2014 Phys. Rev. A 90 063839
[27] Erlingsson S I, Egues J C and Loss D 2010 Phys. Rev. B 82 155456
[28] Schiroa M, Bordyuh M, Otu ztop B and Tureci H E 2012 Phys. Rev. Lett. 109 053601
[29] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[30] Grimsmo A L and Parkins S 2013 Phys. Rev. A 87 033814
[31] Grimsmo A L and Parkins S 2014 Phys. Rev. A 89 033802
[32] Eckle H P and Johannesson H 2017 J. Phys. A: Math. Theor. 50 294004
[33] Xie Y F, Duan L W and Chen Q H 2019 J. Phys. A: Math. Theor. 52 245304
[34] Xie Y F and Chen Q H 2019 Commun. Theor. Phys. 71 623
[35] Cong L, Felicetti S, Casanova J, Lamata L, Solano E and Arrazola I 2019 arXiv:1908.07358
[36] Zhang Z Q, Lee C H, Kumar R, Arnold K J, Masson S J, Grimsmo A L, Parkins A S and Barrett M D 2018 Phys. Rev. A 97 043858
[37] Xie Q T, Zhong H H, Batchelor M T and Lee C H 2016 J. Phys. A: Math. Theor. 50 113001
[38] Chen Q H, Liu T, Zhang Y Y and Wang K L 2011 Europhys. Lett. 96 14003
[39] Feranchuk I D, Komarov L I and Ulyanenkov A P 1996 J. Phys. A 29 4035
[40] Irish E K 2007 Phys. Rev. Lett. 99 173601
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[4] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[5] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[6] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[7] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[8] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[11] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[12] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[13] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[14] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
[15] Experimental realization of two-dimensional single-layer ultracold gases of 87Rb in an accordion lattice
Liangwei Wang(王良伟), Kai Wen(文凯), Fangde Liu(刘方德), Yunda Li(李云达), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), Liangchao Chen(陈良超), Wei Han(韩伟), Zengming Meng(孟增明), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(10): 103401.
No Suggested Reading articles found!