Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040305    DOI: 10.1088/1674-1056/aca398
GENERAL Prev   Next  

Quantum dynamical resource theory under resource non-increasing framework

Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水)
School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  We define the resource non-increasing (RNI) framework to study the dynamical resource theory. With this definition, we propose several potential quantification candidates under various free operation sets. For explicit demonstrations, we quantify the quantum dynamical coherence in the scenarios with and without post-selective measurements. Correspondingly, we show that the maximally incoherent operations (MIO) and the incoherent operations (IO) in the static coherence resource theory are free in the sense of dynamical coherence. We also provide operational meanings for the measures by the quantum discrimination tasks. Moreover, for the dynamical total coherence, we also present convenient measures and give the analytic calculation for the amplitude damping channel.
Keywords:  quantum resource theory      quantum channels      quantum coherence  
Received:  28 July 2022      Revised:  26 September 2022      Accepted manuscript online:  17 November 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Hk (Quantum communication)  
  34.80.Pa (Coherence and correlation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175029, 11775040, and 12011530014).
Corresponding Authors:  Chang-Shui Yu     E-mail:  ycs@dlut.edu.cn

Cite this article: 

Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水) Quantum dynamical resource theory under resource non-increasing framework 2023 Chin. Phys. B 32 040305

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[3] Girolami D and Yadin B 2017 Entropy 19 124
[4] Yu C S and Song H S 2009 Phys. Rev. A 80 022324
[5] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[6] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[7] Cavalcanti D, Aolita L, Boixo S, Modi K, Piani M and Winter A 2010 Phys. Rev. A 83 483
[8] Luo S 2008 Phys. Rev. A 77 042303
[9] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[10] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[11] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419
[12] Kirchmair G, Zähringer F, Gerritsma R, Kleinmann M, Gühne O, Cabello A, Blatt R and Roos C F 2009 Nature 460 494
[13] Strobel H, Muessel W, Linnemann D, Zibold T, Hume D B, Pezzé L, Smerzi A and Oberthaler M K 2014 Science 345 424
[14] Marvian I and Spekkens R 2014 Nat. Commun. 5 3821
[15] Yu X D, Zhang D J, Xu G F and Tong D M 2016 Phys. Rev. A 94 060302
[16] Rana S, Parashar P and Lewenstein M 2016 Phys. Rev. A 93 012110
[17] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
[18] Zhao H Q and Yu C S 2018 Sci. Rep. 8 299
[19] Yu C S 2017 Phys. Rev. A 95 042337
[20] Bu K, Singh U, Fei S M, Pati A K and Wu J 2017 Phys. Rev. Lett. 119 150405
[21] Wu Z, Zhang L, Fei S M and Li-Jost X 2020 J. Phys. A: Math. Theor. 54 015302
[22] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[23] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
[24] Rana S, Parashar P, Winter A and Lewenstein M 2017 Phys. Rev. A 96 052336
[25] Zhu H, Hayashi M and Chen L 2018 Phys. Rev. A 97 022342
[26] Patel D, Patro S, Vanarasa C, Chakrabarty I and Pati A K 2021 Phys. Rev. A 103 022422
[27] Marvian I, Spekkens R W and Zanardi P 2016 Phys. Rev. A 93 052331
[28] Piani M, Cianciaruso M, Bromley T R, Napoli C, Johnston N and Adesso G 2016 Phys. Rev. A 93 042107
[29] Ioffe L and Mézard M 2007 Phys. Rev. A 75 032345
[30] Korzekwa K, Czachórski S, Puchala Z and Życzkowski K 2018 New J. Phys. 20 043028
[31] Wang X, Wilde M M and Su Y 2019 New J. Phys. 21 103002
[32] Bischof F, Kampermann H and Bruß D 2019 Phys. Rev. Lett. 123 110402
[33] Saxena G, Chitambar E and Gour G 2020 Phys. Rev. Res. 2 023298
[34] Xu J 2021 Phys. Lett. A 387 127028
[35] Gour G and Scandolo C M 2020 Phys. Rev. Lett. 125 180505
[36] Theurer T, Satyajit S and Plenio M B 2020 Phys. Rev. Lett. 125 130401
[37] Chitambar E and Gour G 2019 Rev. Mod. Phys. 91 025001
[38] Liu Y and Yuan X 2020 Phys. Rev. Res. 2 012035
[39] Kuroiwa K and Yamasaki H 2020 Quantum 4 355
[40] Díaz M G, Desef B, Rosati M, Egloff D, Calsamiglia J, Smirne A, Skotiniotis M and Huelga S F 2020 Quantum 4 249
[41] Designolle S, Uola R, Luoma K and Brunner N 2021 Phys. Rev. Lett. 126 220404
[42] Gour G and Winter A 2019 Phys. Rev. Lett. 123 150401
[43] Masini M, Theurer T and Plenio M B 2021 Phys. Rev. A 103 042426
[44] Hsieh C Y 2021 PRX Quantum 2 020318
[45] Theurer T, Egloff D, Zhang L and Plenio M B 2019 Phys. Rev. Lett. 122 190405
[46] Mani A and Karimipour V 2015 Phys. Rev. A 92 032331
[47] Yang S R and Yu C S 2018 Ann. Phys. 388 305
[48] Yu C S, Yang S R and Guo B Q 2016 Quantum Inf. Proc. 15 3773
[49] Nielsen M A and Chuang I 2000 Quantum computation and quantum information (Cambridge: Cambridge University Press)
[50] Yang S R and Yu C S 2021 arXiv: 2110.14267
[51] Chiribella G, D'Ariano G M and Perinotti P 2008 Phys. Rev. Lett. 101 180501
[52] Cooney T, Mosonyi M and Wilde M M 2016 Commun. Math. Phys. 344 797
[53] Hayashi M 2009 IEEE Trans. Inf. Theor. 55 3807
[54] Duan R, Feng Y and Ying M 2009 Phys. Rev. Lett. 103 210501
[55] Matthews W, Wehner S and Winter A 2009 Commun. Math. Phys. 291 813
[56] Choi M D 1975 Linear Algebra Appl. 10 285
[57] Jamio lkowski A 1972 Rep. Math. Phys. 3 275
[58] Khachiyan L 1980 USSR Comput. Math. Phys. 20 53
[59] Watrous J 2018 The Theory of Quantum Information (Cambridge: Cambridge university press)
[60] Giorgi G and Kjeldsen T H 2014 Traces and Emergence of Nonlinear Programming (New York: Springer)
[61] Grant M and Boyd S Cvx: Matlab software for disciplined convex programming
[1] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[2] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[3] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[4] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[5] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[6] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[7] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[8] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[9] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[10] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[11] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[12] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[13] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[14] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[15] The heat and work of quantum thermodynamic processes with quantum coherence
Shanhe Su(苏山河), Jinfu Chen(陈劲夫), Yuhan Ma(马宇翰), Jincan Chen(陈金灿), Changpu Sun(孙昌璞). Chin. Phys. B, 2018, 27(6): 060502.
No Suggested Reading articles found!