Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 024212    DOI: 10.1088/1674-1056/abd753
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
Prev   Next  

Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit

Zhi-Xuan Yang(杨智璇)1,†, Yi-Meng Zhang(张一萌)1,†, Yu-Xuan Zhou(周宇轩)1,4, Li-Bo Zhang(张礼博)1,2,3, Fei Yan(燕飞)1,2,3, Song Liu(刘松)1,2,3, Yuan Xu(徐源)1,2,3, and Jian Li(李剑)1,2,3,
1 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 2 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 3 Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 4 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  Superconducting circuit quantum electrodynamics (QED) architecture composed of superconducting qubit and resonator is a powerful platform for exploring quantum physics and quantum information processing. By employing techniques developed for superconducting quantum computing, we experimentally investigate phase-sensitive Landau-Zener-Stückelberg (LZS) interference phenomena in a circuit QED. Our experiments cover an extensive range of LZS transition parameters and demonstrate the LZS induced Rabi-like oscillation as well as phase-dependent steady-state population.
Keywords:  superconducting qubit      circuit QED      Landau-Zener-Stückelberg interference  
Received:  15 October 2020      Revised:  15 December 2020      Accepted manuscript online:  30 December 2020
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  03.67.Lx (Quantum computation architectures and implementations)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
  85.25.Cp (Josephson devices)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2018B030326001), the National Natural Science Foundation of China (Grant Nos. U1801661, 11874065, and Youth Project No. 11904158), the Guangdong Provincial Key Laboratory (Grant No. 2019B121203002), the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ1031), and the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. JCYJ20170412152620376 and YTDPT20181011104202253).
Corresponding Authors:  These authors contributed equally. Corresponding author. E-mail: lij33@sustech.edu.cn   

Cite this article: 

Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑) Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit 2021 Chin. Phys. B 30 024212

1 Shevchenko S N, Ashhab S and Nori F 2010 Phys. Rep. 492 1
2 Landau L D 1932 Phys. Z. Sowjet. 1 88
3 Landau L D 1932 Phys. Z. Sowjet. 2 46
4 Zener C 1932 Proc. R. Soc. Lond. A 137 696
5 St\"uckelberg E C G Majorana E 1932 Nuovo Cimento 9 43
7 Petta J R, Lu H and Gossard A C 2010 Science 327 669
8 Ota T, Hitachi K and Muraki K 2018 Sci. Rep. 8 5491
9 Zhou J, Huang P, Zhang Q, Wang Z, Tan T, Xu X, Shi F, Rong X, Ashhab S and Du J 2014 Phys. Rev. Lett. 112 010503
10 Oliver W D, Yu Y, Lee J C, Berggren K K, Levitov L S and Orlando T P 2005 Science 310 1653
11 Sillanp\"a\"a M, Lehtinen T, Paila A, Makhlin Y and Hakonen P 2006 Phys. Rev. Lett. 96 187002
12 Wilson C M, Duty T, Persson F, Sandberg M, Johansson G and Delsing P 2007 Phys. Rev. Lett. 98 257003
13 Sun G, Wen X, Mao B, Yu Y, Chen J, Xu W, Kang L, Wu P and Han S 2011 Phys. Rev. B 83 180507(R)
14 Liu H, Dai M and Wei L F 2019 Phys. Rev. A 99 013820
15 Kervinen M, Ram\'irez-Mu\ noz J E, V\"alimaa A and Sillanp\"a\"a M A 2019 Phys. Rev. Lett. 123 240401
16 Devoret M H and Martinis J M 2004 Quant. Inf. Process. 3 163
17 Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318
18 Wendin G 2017 Rep. Prog. Phys. 80 106001
19 Chiorescu I, Nakamura Y, Harmans C J P M and Mooij J E 2003 Science 299 1869
20 Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
21 McDermott R, Simmonds R W, Steffen M, Cooper K B, Ciack K, Osborn K D, Oh S, Pappas D P and Martinis J M 2005 Science 307 1299
22 Garraway B M and Vitanov N V 1997 Phys. Rev. A 55 4418
23 Neilinger P, Shevchenko S N, Bog\'ar J, Reh\'ak M, Oelsner G, Karpov D S, H\"ubner U, Astafiev O, Grajcar M and Il'ichev E 2016 Phys. Rev. B 94 094519
24 Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
25 Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
26 Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502
27 Arute F, Arya K and Martinis J M 2019 Nature 574 505
28 Carmichael H 1991 An Open Systems Approach to Quantum Optics, (Springer Berlin Heidelberg) pp. 22-32
29 Li J, Silveri M P, Kumar K S, Pirkkalainen J M, Veps\"al\"ainen A, Chien W C, Tuorila J, Sillanp\"a\"a M A, Hakonen P J, Thuneberg E V and Paraoanu G S 2013 Nat. Commun. 4 1420
30 Wu T, Zhou Y, Xu Y, Liu S and Li J 2019 Chin. Phys. Lett. 36 124204
31 Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett. 95 060501
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[3] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[4] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[5] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[6] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[7] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[8] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[9] Hardware for multi-superconducting qubit control and readout
Zhan Wang(王战), Hai Yu(于海), Rongli Liu(刘荣利), Xiao Ma(马骁), Xueyi Guo(郭学仪), Zhongcheng Xiang(相忠诚), Pengtao Song(宋鹏涛), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(11): 110305.
[10] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[11] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
[12] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[13] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
[14] Cavity-induced ATS effect on a superconducting Xmon qubit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Jianghao Ding(丁江浩), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Yanjun Liu(刘彦军), Zhongcheng Xiang(相忠诚), Jie Li(李洁), Yirong Jin(金贻荣), Yuxi Liu(刘玉玺), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(8): 084202.
[15] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
No Suggested Reading articles found!