Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037303    DOI: 10.1088/1674-1056/ac891b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process

Jingshu Guo(郭静姝)1,2, Jiejie Zhu(祝杰杰)1,2,†, Siyu Liu(刘思雨)1,2, Jielong Liu(刘捷龙)2,3, Jiahao Xu(徐佳豪)1,2, Weiwei Chen(陈伟伟)4, Yuwei Zhou(周雨威)2,3, Xu Zhao(赵旭)2,3, Minhan Mi(宓珉瀚)1,2, Mei Yang(杨眉)2,3, Xiaohua Ma(马晓华)1,2,‡, and Yue Hao(郝跃)1,2
1 School of Microelectronics, Xidian University, Xi'an 710071, China;
2 The National Key Discipline Laboratory of Wide Bandgap Semiconductor, Xidian University, Xi'an 710071, China;
3 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
4 China Academy of Space Technology(Xi'an), Xi'an 710100, China
Abstract  This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal-organic chemical vapor deposition (MOCVD) regrowth technique. The 150-nm regrown n+-InGaN exhibits a low sheet resistance of 31 Ω/□, resulting in an extremely low contact resistance of 0.102 Ω·mm between n+-InGaN and InAlN/GaN channels. Mask-free regrowth process was also used to significantly improve the sheet resistance of InAlN/GaN with MOCVD regrown ohmic contacts. Then, the diffusion mechanism between n+-InGaN and InAlN during regrowth process was investigated with electrical and structural characterizations, which could benefit the further process optimization.
Keywords:  InAlN/GaN      low-resistance ohmic contacts      metal-organic chemical vapor deposition (MOCVD)      n+-InGaN      time of flight secondary ion mass spectrometry (TOF-SIMS)  
Received:  24 April 2022      Revised:  25 July 2022      Accepted manuscript online:  12 August 2022
PACS:  73.40.Cg (Contact resistance, contact potential)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
Fund: Project supported by the Fundamental Research Funds for the National Key Research and Development Project of China (Grant No. 2020YFB1807403), the National Natural Science Foundation of China (Grant Nos. 62174125 and 62131014), the Fundamental Research Funds for the Central Universities (Grant Nos. QTZX22022 and YJS2213), and the Innovation Fund of Xidian University.
Corresponding Authors:  Jiejie Zhu, Xiaohua Ma     E-mail:  jjzhu@mail.xidian.edu.cn;xhma@xidian.edu.cn

Cite this article: 

Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃) Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process 2023 Chin. Phys. B 32 037303

[1] Kuzmík J 2001 IEEE Electron Dev. Lett. 22 510
[2] Then H W, Chow L A, Dasgupta S, Gardner S, Radosavljevic M, Rao V R, Sung S H, Yang G and Chau R S 2015 Symposium on VLSI Technology, June 16-18, 2015, Kyoto, Japan pp. T202-T203
[3] Wang R, Li G, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H 2011 IEEE Electron Dev. Lett. 32 892
[4] Mi M, Wu S, Zhang M, Yang L, Hou B, Zhao Z, Guo L, Zheng X, Ma X and Hao Y 2019 Appl. Phys. Express 12 114001
[5] Mi M, Zhang M, Wu S, Yang L, Hou B, Zhou Y, Guo L, Ma X and Hao Y 2020 Chin. Phys. B 29 057307
[6] Abid I, Mehta J, Cordier Y, Derluyn J, Degroote S, Miyake H and Medjdoub F 2021 Electronics 10 635
[7] Zhang L Q, Shi J S, Huang H F, Liu X Y, Zhao S X, Wang P F and Zhang D W 2015 IEEE Electron Dev. Lett. 36 896
[8] Hou M, Xie G and Sheng K 2018 IEEE Electron Dev. Lett. 39 1137
[9] Yadav Y K, Upadhyay B B, Meer M, Bhardwaj N, Ganguly S and Saha D 2019 IEEE Electron Dev. Lett. 40 67
[10] Tsou C W, Kang H C, Lian Y W and Hsu S 2016 IEEE Trans. Electron Dev. 63 4218
[11] Lu Y, Ma X, Yang L, Hou B, Mi M, Zhang M, Zheng J, Zhang H and Hao Y 2018 IEEE Electron Dev. Lett. 39 1137
[12] Lin Y K, Noda S, Lo H C, Liu S C, Wu C H, Wong Y Y, Luc Q H, Chang P C, Hsu H T, Samukawa S and Chang E Y 2016 IEEE Electron Dev. Lett. 37 1395
[13] Tzou A J, Hsieh D H, Chen S H, Li Z Y, Chang C Y and Kuo H C 2016 Semicond. Sci. Technol. 31 055003
[14] Guo J, Cao Y, Lian C, Zimmermann T, Li G, Verma J, Gao X, Guo S, Saunier P, Wistey M, Jena D and Xing H G 2011 Physica Status Solidi A 208 1617
[15] Li L, Nomoto K, Pan M, Li W, Hickman A, Miller J, Lee K, Hu Z, Bader S J, Lee S M, Hwang C M, Jena D and Xing H G 2020 IEEE Electron Dev. Lett. 41 689
[16] Tang Y, Shinohara K, Regan D, Corrion A, Brown D, Wong J, Schmitz A, Fung H, Kim S and Micovic M 2015 IEEE Electron Dev. Lett. 36 896
[17] Joglekar S, Azize M, Beeler M, Monroy E and Palacios T 2016 Appl. Phys. Lett. 109 041602
[18] Guo H Y, Lv Y J, Gu G D, Dun S B, Fang Y L, Zhang Z R, Tan X, Song X B, Zhou X Y and Feng Z H 2015 Chin. Phys. Lett. 32 118501
[19] Hatui N, Krishna A, Li H, Gupta C, Romanczyk B, Acker-James D, Ahmadi E, Keller S and Mishra U K 2020 Semicond. Sci. Technol. 35 095002
[20] Koksaldi O S, Romanczyk B, Haller J, Guidry M, Li H, Keller S and Mishra U K 2020 Semicond. Sci. Technol. 35 124004
[21] Dialea M, Aureta F D, Berga N G van der, Odendaala R Q and Roosb W D 2005 Appl. Surf. Sci. 246 279
[22] Prabhakaran K, Andersson T G and Nozawa K 1996 Appl. Phys. Lett. 69 3212
[23] Zhou Y, Mi M, Yang M, Han Y, Wang P, Chen Y, Liu J, Gong C, Lu Y, Zhang M, Zhu Q, Ma X and Hao Y 2022 Appl. Phys. Lett. 120 062104
[24] Gary S M and Simon M S 2007 Fundamentals of semiconductor fabrication translated by Dai Y P (Peking: Posts and Telecom Press) p. 80 (in Chinese)
[25] Guo X H, Hu L, Ren X Y, Wu S, Zhang L Q, Zhang Z J, Yang H and Liu J P 2021 Chinese Journal of Luminescence 42 889
[26] Guo J, Li G, Faria F, Cao Y, Wang R, Verma J, Gao X, Guo S, Beam E, Ketterson A, Schuette M, Saunier P, Wistey M, Jena D and Xing H 2012 IEEE Electron Dev. Lett. 33 525
[27] Fu X C, Lv Y J, Zhang L J, Zhang T, Li X J, Song X B, Zhang Z R, Fang Y L and Feng Z H 2018 Electron. Lett. 54 783
[28] Suzuki A, Choe S, Yamada Y, Otsuka N and Ueda D 2016 Jpn. J. Appl. Phys. 55 121001
[29] Yang L, Zhang M, Hou B, Mi M, Wu M, Zhu Q, Lu Y, Zhu J, Zhou X, Lv L, Ma X and Hao Y 2020 IEEE Trans. Electron Dev. 67 4808
[30] Zhu Q, Ma X, Hou B, Wu M, Zhu J, Yang L, Zhang M and Hao Y 2020 IEEE Access 8 35520
[31] Pandey S, Cavalcoli D, Minj A, Fraboni B, Cavallini A, Gamarra P and Poisson M A 2012 J. Appl. Phys. 112 123721
[32] Godejohann B J, Ture E, Muller S, Prescher M, Kirste L, Aidam R, Polyakov V, Bruckner P, Breuer S, Kohler K, Quay R and Ambacher O 2017 Phys. Status Solidi B 254 1600715
[33] Katayama M 1991 J. Appl. Phys. 69 3541
[34] Bedair S M, McIntosh F G, Roberts J C, Piner E L, Boutros K S and E1-Masry N A 1997 J. Cryst. Growth 178 32
[35] Wang J, Xu F, Zhang X, An W, Li X Z, Song J, Ge W, Tian G, Lu J, Wang X, Tang N, Yang Z, Li W, Wang W, Jin P, Chen Y and Shen B 2014 Sci. Rep. 4 6521
[36] Dasgupta S, Nidhi, Brown D F, Wu F, Keller S, Speck J S and Mishra U K 2010 Appl. Phys. Lett. 96 143504
[1] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[2] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[3] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[4] Simulation study of InAlN/GaN high-electron mobility transistor with AlInN back barrier
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Lei Yang(杨磊), Yang Wang(王杨). Chin. Phys. B, 2017, 26(10): 107301.
[5] Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications
Huang Jie (黄杰), Li Ming (黎明), Zhao Qian (赵倩), Gu Wen-Wen (顾雯雯), Lau Kei-May (刘纪美). Chin. Phys. B, 2015, 24(8): 087305.
No Suggested Reading articles found!