Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide
Cheng-Xiang Zhao(赵承祥)1,†, Miao-Miao Zheng(郑苗苗)1, Yuan Qie(郄媛)1, and Fang-Wei Han(韩方微)2
1 College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China; 2 School of Medical Information Engineering, Jining Medical University, Jining 272067, China
Abstract The acoustic-phonon emission from monolayer molybdenum disulfide (ML-MoS2) driven by a direct-current electric field is studied theoretically using the Boltzmann equation method. It is found that the Cerenkov emission of terahertz acoustic-phonons can be generated when a very weak electric field is applied to ML-MoS2. The physical mechanisms of acoustic-phonon emission are analyzed from the perspective of condensed matter physics. The acoustic-phonon emission from ML-MoS2 is also compared with those from graphene and GaAs. The results reveal that the frequencies of acoustic-phonons generated by ML-MoS2 are between the frequencies of those generated from GaAs and graphene. The results of this work suggest that the ML-MoS2 can make up for graphene and GaAs in respect of acoustic-phonon emission and be used in tunable hypersonic devices such as terahertz sound sources.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604192), the Fundamental Research Program of Shanxi Province, China (Grant No. 202103021224250), the Science and Technology Innovation Project of Colleges and Universities of Shanxi Province of China (Grant No. 2020L0242), and the Start-up funding from Shanxi Normal University (Grant No. 0505/02070351).
Cheng-Xiang Zhao(赵承祥), Miao-Miao Zheng(郑苗苗), Yuan Qie(郄媛), and Fang-Wei Han(韩方微) Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide 2022 Chin. Phys. B 31 127202
[1] Mante P A, Stoumpos C C, Kanatzidis M G and Yartsev A 2017 Nat. Commun.8 14398 [2] Zheng Y, Feng S P and Yang S J 2016 Chin. Phys. B25 067301 [3] Wang Y, Hurley D H, Hua Z, Pezeril T, Raetz S, Gusev V E, Tournat V and Khafizov M 2020 Nat. Commun.11 1597 [4] Ge S F, Liu X F, Qiao X F, Wang Q S, Xu Z, Qiu J, Tan P H, Zhao J M and Sun D 2014 Sci. Rep.4 5722 [5] Miller K, Qi J, Xu Y, Cho Y J, Liu X, Furdyna J K, Perakis I, Shahbazyan T V and Tolk N 2006 Phys. Rev. B74 113313 [6] Shen X H, Lu Z H, Timalsina Y P, Lu T M, Washington M and Yamaguchi M 2018 Sci. Rep.8 7054 [7] Bruggemann C, Akimov A V, Scherbakov A V, Bombeck M, Schneider C, Hofling S, Forchel A, Yakovlev D R and Bayer M 2012 Nat. Photon.6 30 [8] Shinokita K, Reimann K, Woerner M, Elsaesser T, Hey R and Flytzanis C 2016 Phys. Rev. Lett.116 075504 [9] Beardsley R P, Akimov A V, Henini M and Kent A J 2010 Phys. Rev. Lett.104 085501 [10] Dong L C, Tian S C, Wang T and Lu Z F 2017 Chin. Opt.10 0415 [11] Zhang Z B, Ma X B, Jin Z M, Ma G H and Yang J B 2012 Acta Phys. Sin.61 097401 (in Chinese) [12] Zhao X F, Zhang J, Chen S M and Xu W 2009 J. Appl. Phys.105 104514 [13] Kubakaddi S S 2016 J. Appl. Phys.119 195701 [14] Zhao C X, Xu W and Peeters F M 2013 Appl. Phys. Lett.102 222101 [15] Sureshaa K, Kubakaddi S S, Mulimanib B G and Lee S L 2006 Physica E33 50 [16] Huang Z X, Shi Y, Xin Y, Pu L, Zhang R and Zheng Y D 2005 Phys. Lett. A342 181 [17] Komirenko S M and Kim K W 2000 Phys. Rev. B62 7459 [18] Mak K F, Lee C G, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett.105 136805 [19] Kaasbjerg K, Thygesen K S and Jacobsen K W 2012 Phys. Rev. B85 115317 [20] Chen J H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Nat. Nanotech.3 206 [21] Yu Z H, Ong Z Y, Li S L, Xu J B, Zhang G, Zhang Y W, Shi Y and Wang X R 2017 Adv. Funct. Mater.27 1604093 [22] Dong H M, Xu W and Peeters F M 2011 J. Appl. Phys.110 063704 [23] Li X D, Mullen Jeffrey T, Jin Z H, Borysenko Kostyantyn M, Nardelli M B and Kim K W 2013 Phys. Rev. B87 115418 [24] Kubakaddi S S 2017 J. Appl. Phys.121 145702 [25] Ong Z Y and Fischetti M V 2013 Phys. Rev. B88 165316 [26] Dong H M 2013 Acta Phys. Sin.62 206101 (in Chinese) [27] Xu W, Peeters F M and Lu T C 2009 Phys. Rev. B79 073403
A self-powered and sensitive terahertz photodetection based on PdSe2 Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.