CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure |
Xiaoyu Liu(刘晓宇)1,2, Yong Zhang(张勇)1,†, Haoran Wang(王皓冉)2, Haomiao Wei(魏浩淼)1, Jingtao Zhou(周静涛)2,‡, Zhi Jin(金智)2, Yuehang Xu(徐跃杭)1, and Bo Yan(延波)1 |
1 University of Electronic Science and Technology of China, Chengdu 611731, China; 2 Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract A high-performance terahertz Schottky barrier diode (SBD) with an inverted trapezoidal epitaxial cross-sectional structure featuring high varactor characteristics and reverse breakdown characteristics is reported in this paper. Inductively coupled plasma dry etching and dissolution wet etching are used to define the profile of the epitaxial layer, by which the voltage-dependent variation trend of the thickness of the metal-semiconductor contact depletion layer is modified. The simulation of the inverted trapezoidal epitaxial cross-section SBD is also conducted to explain the physical mechanism of the electric field and space charge region area. Compared with the normal structure, the grading coefficient M increases from 0.47 to 0.52, and the capacitance modulation ratio (Cmax/Cmin) increases from 6.70 to 7.61. The inverted trapezoidal epitaxial cross-section structure is a promising approach to improve the variable-capacity ratio by eliminating the accumulation of charge at the Schottky electrode edge. A 190 GHz frequency doubler based on the inverted trapezoidal epitaxial cross-section SBD also shows a doubling efficiency of 35% compared to that 30% of a normal SBD.
|
Received: 07 February 2022
Revised: 22 March 2022
Accepted manuscript online: 28 March 2022
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.Kk
|
(Junction diodes)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61871072). |
Corresponding Authors:
Yong Zhang, Jingtao Zhou
E-mail: yongzhang@uestc.edu.cn;zhoujingtao@ime.ac.cn
|
Cite this article:
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波) High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure 2023 Chin. Phys. B 32 017305
|
[1] Mehdi I, Siles J V, Lee C and Schlecht E 2017 Proc. IEEE 105 990 [2] Dhillon S S, Vitiello M S, Linfield E H, Davies A G, Hoffmann M C, Booske J, Paoloni C, Gensch M, Weightman P, Williams G P, Castro-Camus E, Cumming D R S, Simoens F, Escorcia-Carranza I, Grant J, Lucyszyn S, Kuwata-Gonokami M, Konishi K, Koch M, Schmuttenmaer C A, Cocker T L, Huber R, Markelz A G, Taylor Z D, Wallace V P, Axel Zeitler J, Sibik J, Korter T M, Ellison B, Rea S, Goldsmith P, Cooper K B, Appleby R, Pardo D, Huggard P G, Krozer V, Shams H, Fice M, Renaud C, Seeds A, Stöhr A, Naftaly M, Ridler N, Clarke R, Cunningham J E and Johnston M B 2017 J. Phys. D Appl. Phys. 50 043001 [3] Chattopadhyay G 2011 IEEE Trans. Terahertz Sci. Technol. 1 33 [4] Ran J, Han Z, Sun W, Du X, Wu Z and Jung H S 2015 Appl. Phys. Lett. 6 9118 [5] Knap W, Valusis G, Tusakowski J, Coquillat D, Teppe F, Dyakonova N, Nadar S, Karpierz K, Bialek M and Seliuta D 2011 J. Infrared Millim. Te. 6 2828 [6] Holland W S, Mehdi I, Siles J V, Maestrini A, Lin R, Lee C, Schlecht E and Chattopadhyay G 2012 Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI [7] Schlecht E, Siles J V, Lee C, Lin R, Thomas B, Chattopadhyay G and Mehdi I 2014 IEEE Trans. Terahertz Sci. Technol. 4 661 [8] Maestrini A, Thomas B, Wang H, Jung C, Treuttel J, Jin Y, Chattopadhyay G, Mehdi I and Beaudin G 2010 CR Phys. 11 480 [9] Mehdi I, Holland W S, Siles J V, Maestrini A, Lin R, Lee C, Schlecht E and Chattopadhyay G 2012 International Society for Optics and Photonics 8452 845212 [10] Alijabbari N, Bauwens M F and Weikle R M 2015 IEEE Trans. Terahertz Sci. Technol. 5 73 [11] Wu C, Zhang Y, Cui J, Li Y, Xu Y and Xu R 2019 Micromachines 10 [12] Chen Z and Xu J 2012 J. Infrared Millim. Te. 34 28 [13] Hrobak M, Sterns M, Schramm M, Stein W and Schmidt L P 2013 IEEE Trans. Microw. Theory Techniq. 61 4442 [14] Lewis J A and Wasserstrom E 2013 Bell System Technol. J. 49 1183 [15] Mönch W 2014 J. Mater. Sci. 26 1097 [16] Yi H, Jayaprakash K and Cheung C 2017 Applied Power Electronics Conference & Exposition pp. 1047-1053 [17] Moro-Melgar D, Maestrini A, Treuttel J, Gatilova L, González T, Vasallo B G and Mateos J 2016 IEEE Trans. Electron Dev. 63 3900 [18] Lei Y, Shi H, Lu H, Chen D, Zhang R and Zheng Y 2013 Journal of Semiconductors 34 054007 [19] Arbess H and Isoird K 2013 25th International Conference on Microelectronics pp. 1-4 [20] Kone S, Cayrel F, Yvon A, Collard E and Alquier D 2016 Phys. Status Solidi 213 2364 [21] Johnson J W, Zhang A P, Luo W B, Fan R, Pearton S J, Park S S, Park Y J and Chyi J I 2002 IEEE Trans. Electron. Dev. 49 32 [22] Nawawi A, Tseng K J, Rusli, Amaratunga G, Umezawa H and Shikata S 2013 Diam. Relat. Mater. 35 1 [23] Schwarz M and Kloes A 2016 IEEE Trans. Electron Dev. 63 2757 [24] Efremov A, Min N K, Choi B G, Baek K H and Kwon K H 2008 J. Electrochem. Soc. 155 D777 [25] Carroll J E, Seeger K and McKelvey J P 1975 Phys. Today 28 80 [26] Schroder D K 2005 Semiconductor Material and Device Characterization (Semiconductor Material and Device Characterization) [27] Ellis J A and Barnes P A 2000 Appl. Phys. Lett. 76 124 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|