Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017305    DOI: 10.1088/1674-1056/ac6162
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure

Xiaoyu Liu(刘晓宇)1,2, Yong Zhang(张勇)1,†, Haoran Wang(王皓冉)2, Haomiao Wei(魏浩淼)1, Jingtao Zhou(周静涛)2,‡, Zhi Jin(金智)2, Yuehang Xu(徐跃杭)1, and Bo Yan(延波)1
1 University of Electronic Science and Technology of China, Chengdu 611731, China;
2 Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
Abstract  A high-performance terahertz Schottky barrier diode (SBD) with an inverted trapezoidal epitaxial cross-sectional structure featuring high varactor characteristics and reverse breakdown characteristics is reported in this paper. Inductively coupled plasma dry etching and dissolution wet etching are used to define the profile of the epitaxial layer, by which the voltage-dependent variation trend of the thickness of the metal-semiconductor contact depletion layer is modified. The simulation of the inverted trapezoidal epitaxial cross-section SBD is also conducted to explain the physical mechanism of the electric field and space charge region area. Compared with the normal structure, the grading coefficient M increases from 0.47 to 0.52, and the capacitance modulation ratio (Cmax/Cmin) increases from 6.70 to 7.61. The inverted trapezoidal epitaxial cross-section structure is a promising approach to improve the variable-capacity ratio by eliminating the accumulation of charge at the Schottky electrode edge. A 190 GHz frequency doubler based on the inverted trapezoidal epitaxial cross-section SBD also shows a doubling efficiency of 35% compared to that 30% of a normal SBD.
Keywords:  inverted trapezoidal epitaxial cross-section structure      doubler      Schottky barrier diode (SBD)      GaAs      terahertz      capacitance modulation ratio  
Received:  07 February 2022      Revised:  22 March 2022      Accepted manuscript online:  28 March 2022
PACS:  73.61.Ey (III-V semiconductors)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Kk (Junction diodes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61871072).
Corresponding Authors:  Yong Zhang, Jingtao Zhou     E-mail:  yongzhang@uestc.edu.cn;zhoujingtao@ime.ac.cn

Cite this article: 

Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波) High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure 2023 Chin. Phys. B 32 017305

[1] Mehdi I, Siles J V, Lee C and Schlecht E 2017 Proc. IEEE 105 990
[2] Dhillon S S, Vitiello M S, Linfield E H, Davies A G, Hoffmann M C, Booske J, Paoloni C, Gensch M, Weightman P, Williams G P, Castro-Camus E, Cumming D R S, Simoens F, Escorcia-Carranza I, Grant J, Lucyszyn S, Kuwata-Gonokami M, Konishi K, Koch M, Schmuttenmaer C A, Cocker T L, Huber R, Markelz A G, Taylor Z D, Wallace V P, Axel Zeitler J, Sibik J, Korter T M, Ellison B, Rea S, Goldsmith P, Cooper K B, Appleby R, Pardo D, Huggard P G, Krozer V, Shams H, Fice M, Renaud C, Seeds A, Stöhr A, Naftaly M, Ridler N, Clarke R, Cunningham J E and Johnston M B 2017 J. Phys. D Appl. Phys. 50 043001
[3] Chattopadhyay G 2011 IEEE Trans. Terahertz Sci. Technol. 1 33
[4] Ran J, Han Z, Sun W, Du X, Wu Z and Jung H S 2015 Appl. Phys. Lett. 6 9118
[5] Knap W, Valusis G, Tusakowski J, Coquillat D, Teppe F, Dyakonova N, Nadar S, Karpierz K, Bialek M and Seliuta D 2011 J. Infrared Millim. Te. 6 2828
[6] Holland W S, Mehdi I, Siles J V, Maestrini A, Lin R, Lee C, Schlecht E and Chattopadhyay G 2012 Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI
[7] Schlecht E, Siles J V, Lee C, Lin R, Thomas B, Chattopadhyay G and Mehdi I 2014 IEEE Trans. Terahertz Sci. Technol. 4 661
[8] Maestrini A, Thomas B, Wang H, Jung C, Treuttel J, Jin Y, Chattopadhyay G, Mehdi I and Beaudin G 2010 CR Phys. 11 480
[9] Mehdi I, Holland W S, Siles J V, Maestrini A, Lin R, Lee C, Schlecht E and Chattopadhyay G 2012 International Society for Optics and Photonics 8452 845212
[10] Alijabbari N, Bauwens M F and Weikle R M 2015 IEEE Trans. Terahertz Sci. Technol. 5 73
[11] Wu C, Zhang Y, Cui J, Li Y, Xu Y and Xu R 2019 Micromachines 10
[12] Chen Z and Xu J 2012 J. Infrared Millim. Te. 34 28
[13] Hrobak M, Sterns M, Schramm M, Stein W and Schmidt L P 2013 IEEE Trans. Microw. Theory Techniq. 61 4442
[14] Lewis J A and Wasserstrom E 2013 Bell System Technol. J. 49 1183
[15] Mönch W 2014 J. Mater. Sci. 26 1097
[16] Yi H, Jayaprakash K and Cheung C 2017 Applied Power Electronics Conference & Exposition pp. 1047-1053
[17] Moro-Melgar D, Maestrini A, Treuttel J, Gatilova L, González T, Vasallo B G and Mateos J 2016 IEEE Trans. Electron Dev. 63 3900
[18] Lei Y, Shi H, Lu H, Chen D, Zhang R and Zheng Y 2013 Journal of Semiconductors 34 054007
[19] Arbess H and Isoird K 2013 25th International Conference on Microelectronics pp. 1-4
[20] Kone S, Cayrel F, Yvon A, Collard E and Alquier D 2016 Phys. Status Solidi 213 2364
[21] Johnson J W, Zhang A P, Luo W B, Fan R, Pearton S J, Park S S, Park Y J and Chyi J I 2002 IEEE Trans. Electron. Dev. 49 32
[22] Nawawi A, Tseng K J, Rusli, Amaratunga G, Umezawa H and Shikata S 2013 Diam. Relat. Mater. 35 1
[23] Schwarz M and Kloes A 2016 IEEE Trans. Electron Dev. 63 2757
[24] Efremov A, Min N K, Choi B G, Baek K H and Kwon K H 2008 J. Electrochem. Soc. 155 D777
[25] Carroll J E, Seeger K and McKelvey J P 1975 Phys. Today 28 80
[26] Schroder D K 2005 Semiconductor Material and Device Characterization (Semiconductor Material and Device Characterization)
[27] Ellis J A and Barnes P A 2000 Appl. Phys. Lett. 76 124
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[3] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[7] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[8] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[9] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[10] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[11] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[12] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[13] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[14] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[15] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
No Suggested Reading articles found!