Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 030307    DOI: 10.1088/1674-1056/ac9b33
GENERAL Prev   Next  

Security of the traditional quantum key distribution protocols with finite-key lengths

Bao Feng(冯宝)1,2, Hai-Dong Huang(黄海东)3, Yu-Xiang Bian(卞宇翔)1,2, Wei Jia(贾玮)1,2, Xing-Yu Zhou(周星宇)4,†, and Qin Wang(王琴)4
1 State Grid Electric Power Research Institute, Nanjing 211000, China;
2 NRGD Quantum CTEK Co., Ltd., Nanjing 211000, China;
3 State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210000, China;
4 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Quantum key distribution (QKD) in principle can provide unconditional secure communication between distant parts. However, when finite-key length is taken into account, the security can only be ensured within certain security level. In this paper, we adopt the Chernoff bound analysis method to deal with finite-key-size effects, carrying out corresponding investigations on the relationship between the key generation rate and security parameters for different protocols, including BB84, measurement-device-independent and twin-field QKD protocols. Simulation results show that there exists a fundamental limit between the key rate and the security parameters. Therefore, this study can provide valuable references for practical application of QKD, getting a nice balance between the key generation rate and the security level.
Keywords:  quantum key distribution      BB84      measurement-device-independent quantum key distribution      twin-field quantum key distribution  
Received:  19 July 2022      Revised:  29 September 2022      Accepted manuscript online:  19 October 2022
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
Fund: Project supported by the Research on Key Technology and Equipment Development of Autonomous and Controllable Lightweight Endogenous Safety of Power Monitoring System (Grant No. 5108-202118056A-0-0-00).
Corresponding Authors:  Xing-Yu Zhou     E-mail:  xyz@njupt.edu.cn

Cite this article: 

Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴) Security of the traditional quantum key distribution protocols with finite-key lengths 2023 Chin. Phys. B 32 030307

[1] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, 1984, New York, pp. 175-179
[2] Lo H K and Chau H F 1999 Science 283 2050
[3] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[4] Mayers D and Assoc J 2001 Comput. Mach. 48 351
[5] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[6] Wang X B 2005 Phys. Rev. Lett. 94 230503
[7] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[8] Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502
[9] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[10] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[11] Ma X F, Zeng P and Zhou H Y 2018 Phys. Rev. X 8 031043
[12] Wang X B, Yu Z W and Hu X L 2018 Phys. Rev. A 98 062323
[13] Ma X, Fung C H F and Razavi M 2012 Phys. Rev. A 86 052305
[14] Lim C C W, Curty M, Walenta N, Xu F and Zbinden H 2014 Phys. Rev. A 89 022307
[15] Wang Y, Bao W S, Zhou C, Jiang M S and Li H W 2016 Phys. Rev. A 94 032335
[16] Curty M, Xu F, Cui W, Lim C C W, Tamaki K and Lo H K 2014 Nat. Commun. 5 3732
[17] Li H, Jiang H, Gao M, Ma Z, Ma C and Wang W 2015 Phys. Rev. A 92 062344
[18] Yin H L and Chen Z B 2019 Sci. Rep. 9 17113
[19] Fung C H F, Ma X and Chau H F 2010 Phys. Rev. A 81 012318
[20] Yin H L, Zhou M G and Gu J 2020 Sci. Rep. 10 14312
[21] Yin H L and Fu Y 2019 Sci. Rep. 9 3045
[22] Zhang C H, Zhang C M and Wang Q 2019 Opt. Lett. 44 1468
[23] Zhou X Y, Zhang C H, Zhang C M and Wang Q 2019 Phys. Rev. A 99 062316
[24] Wang X B, Wang J T, Qin J Q, Jiang C and Yu Z W 2020 NPJ Quantum Inform. 6 45
[25] Tomamichel M, Lim C C W, Gisin N and Renner R 2012 Nat. Commun. 3 634
[1] Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution
Jiang-Ping Zhou(周江平), Yuan-Yuan Zhou(周媛媛), Xue-Jun Zhou(周学军), and Xuan Bao(暴轩). Chin. Phys. B, 2023, 32(8): 080306.
[2] Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050305.
[3] Phase-matching quantum key distribution with imperfect sources
Xiao-Xu Zhang(张晓旭), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yu Zhou(周雨), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050308.
[4] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[5] Research progress in quantum key distribution
Chun-Xue Zhang(张春雪), Dan Wu(吴丹), Peng-Wei Cui(崔鹏伟), Jun-Chi Ma(马俊驰),Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2023, 32(12): 124207.
[6] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[7] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[8] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[9] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[10] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[11] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[12] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[13] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[14] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[15] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
No Suggested Reading articles found!