Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 028401    DOI: 10.1088/1674-1056/23/2/028401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Study of a millimeter-wave squint indirect holographic algorithm suitable for imaging with large field-of-view

Gao Xiang (高翔)a b, Li Chao (李超)a b, Fang Guang-You (方广有)a b
a Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
b Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In this paper a millimeter-wave (MMW) squint indirect holographic method is presented, which is suitable for imaging with a large field-of-view. The proposed system employs the squint operation mode to remove the background and twin-image interferences, which achieves a similar effect to off-axis holography but leaves out the large-aperture quasi-optical component. The translational scanning manner enables a large field of view and ensures the image uniformity, which is difficult to realize in off-axis holography. In addition, a corresponding imaging algorithm for the presented scheme is developed to reconstruct the image from the recorded hologram. Some imaging results on typical objects, obtained with electromagnetic simulation, demonstrate good performance of the imaging scheme and validate the effectiveness of the image reconstruction algorithm.
Keywords:  millimeter-wave (MMW) indirect holographic scheme      squint operation mode      translational scanning manner      large field-of-view      image uniformity  
Received:  04 February 2013      Revised:  19 March 2013      Accepted manuscript online: 
PACS:  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174280, 60990323, and 60990320) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1123).
Corresponding Authors:  Gao Xiang, Li Chao     E-mail:  xianggao1985@126.com;cli@mail.ie.ac.cn
About author:  84.40.-x; 84.40.Xb

Cite this article: 

Gao Xiang (高翔), Li Chao (李超), Fang Guang-You (方广有) Study of a millimeter-wave squint indirect holographic algorithm suitable for imaging with large field-of-view 2014 Chin. Phys. B 23 028401

[1] Gabor D 1948 Nature 161 777
[2] Zhang Q S, Lü X X, Yu Q T and Liu G Y 2009 Chin. Phys. B 18 2764
[3] Tamminen A, Laurinaho J A and Raisanen A V 2008 European Radar Conference, October 30–31, 2008, Amsterdam, Netherlands, p. 168
[4] Heimbeck M S, Kim M K, Gregory D A and Everitt H O 2011 Opt. Express 19 9192
[5] Adametz J, Gumbmann F and Schmidt L P 2011 6th German Microwave Conference, March 14–16, 2011, Darmstadt, Germany, p. 1
[6] Sheen D M, McMakin D L, Hall T E and Severtsen R H 2009 IEEE Conference on Technologies for Homeland Security, May 11–12, 2009, Waltham, USA, p. 440
[7] Appleby R and Wallace H B 2007 IEEE Trans. Antennas Propag. 55 2944
[8] Gao X, Li C, Gu S M and Fang G Y 2012 IEEE Antennas and Wireless Propaga. Lett. 11 787
[9] Xue K, Li Q, Li Y D and Wang Q 2012 Opt. Lett. 37 3228
[10] Leach M, Elsdon M, Foti S J and Smith D 2006 Microwave Opt. Technol. Lett. 48 1957
[11] Mahon R J, Murphy J A and Lanigan W 2006 Opt. Commun. 260 469
[12] Carrier G F, krook M and Pearson C E 1966 Functions of a Complex Variable (New York: McGraw-Hill), p. 257
[1] A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer
Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2022, 31(11): 117601.
[2] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[3] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[4] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[5] Wideband radar cross section reduction based on absorptive coding metasurface with compound stealth mechanism
Xinmi Yang(杨歆汨), Changrong Liu(刘昌荣), Bo Hou(侯波), and Xiaoyang Zhou(周小阳). Chin. Phys. B, 2021, 30(10): 104102.
[6] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[7] A radar-infrared compatible broadband absorbing surface: Design and analysis
Qing-Tao Yu(余庆陶), Yuan-Song Zeng(曾元松), and Guo-Jia Ma(马国佳). Chin. Phys. B, 2021, 30(7): 078402.
[8] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[9] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[10] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
[11] Rydberg electromagnetically induced transparency and Autler-Townes splitting in a weak radio-frequency electric field
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Yuechun Jiao(焦月春), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(5): 053202.
[12] Equivalent electromagnetic parameters for microwave metamaterial absorber using a new symmetry model
Junming Zhang(张峻铭), Donglin He(何东霖), Guowu Wang(王国武), Peng Wang(王鹏), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸). Chin. Phys. B, 2019, 28(5): 058401.
[13] “Refractivity-from-clutter” based on local empirical refractivity model
Xiaofeng Zhao(赵小峰). Chin. Phys. B, 2018, 27(12): 128401.
[14] Metamaterials and metasurfaces for designing metadevices: Perfect absorbers and microstrip patch antennas
Yahong Liu(刘亚红), Xiaopeng Zhao(赵晓鹏). Chin. Phys. B, 2018, 27(11): 117805.
[15] Damage effects and mechanism of the silicon NPN monolithic composite transistor induced by high-power microwaves
Hui Li(李慧), Chang-Chun Chai(柴常春), Yu-Qian Liu(刘彧千), Han Wu(吴涵), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2018, 27(8): 088502.
No Suggested Reading articles found!