Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 108401    DOI: 10.1088/1674-1056/22/10/108401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A novel slotted helix slow-wave structure for high power Ka-band traveling-wave tubes

Liu Lu-Wei (刘鲁伟)a, Wei Yan-Yu (魏彦玉)a, Wang Shao-Meng (王少萌)a, Hou Yan (侯艳)a, Yin Hai-Rong (殷海荣)a, Zhao Guo-Qing (赵国庆)a, Duan Zhao-Yun (段兆云)a, Xu Jin (徐进)a, Gong Yu-Bin (宫玉彬)a, Wang Wen-Xiang (王文祥)a, Yang Ming-Hua (杨明华)b
a National Key Laboratory of Science and Technology on Vacuum Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China;
b Beijing Vacuum Electronics Research Institute (BVERI), Beijing 100016, China
Abstract  A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capacity than a conventional helix SWS, evolves from conventional helix SWS with three parallel rows of rectangular slots made in the outside of the helix tape. In this paper, the electromagnetic characteristics and the beam-wave interaction of this novel structure operating in the Ka-band are investigated. From our calculations, when the designed beam voltage and beam current are set to be 18.45 kV and 0.2 A, respectively, this novel circuit can produce over 700-W average output power in a frequency range from 27.5 GHz to 32.5 GHz, and the corresponding conversion efficiency values vary from 19% to 21.3%, and the maximum output power is 787 W at 30 GHz.
Keywords:  slotted helix      slow-wave structure      millimeter-wave      traveling-wave tube      beam-wave interaction  
Received:  06 December 2012      Revised:  17 April 2013      Accepted manuscript online: 
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  84.47.+w (Vacuum tubes)  
  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61271029), the Natural Science Key Laboratory Foundation, and the Natural Science Fund for Distinguished Young Scholars of China (Grant No. 61125103).
Corresponding Authors:  Wei Yan-Yu     E-mail:  yywei@uestc.edu.cn

Cite this article: 

Liu Lu-Wei (刘鲁伟), Wei Yan-Yu (魏彦玉), Wang Shao-Meng (王少萌), Hou Yan (侯艳), Yin Hai-Rong (殷海荣), Zhao Guo-Qing (赵国庆), Duan Zhao-Yun (段兆云), Xu Jin (徐进), Gong Yu-Bin (宫玉彬), Wang Wen-Xiang (王文祥), Yang Ming-Hua (杨明华) A novel slotted helix slow-wave structure for high power Ka-band traveling-wave tubes 2013 Chin. Phys. B 22 108401

[1] Feng J J, Hu Y F, Cai J, Wu X P and Tang Y 2010 Vacuum Electronics 52 27 (in Chinese)
[2] Komm D S, Benton R T, Limburg H C, Menninger W L and Zhai X L 2001 IEEE Trans. Electron Dev. 48 174
[3] He J, Wei Y Y, Gong Y B, Duan Z Y and Wang W X 2010 Acta Phys. Sin. 59 2843 (in Chinese)
[4] He J, Wei Y Y, Gong Y B, Duan Z Y, Lu Z G and Wang W X 2010 Acta Phys. Sin. 59 6659 (in Chinese)
[5] He J, Wei Y Y, Gong Y B and Wang W X 2011 Chin. Phys. B 20 054102
[6] Gao X, Yang Z Q, Cao W P and Jiang Y N 2011 Chin. Phys. B 20 030703
[7] Feng J J, Cai J, Hu Y F, Wu X P, Ma S Y and Qu B 2009 Institute of Chinese Electronics Conference on Microwave Tubes, p. 5 (in Chinese)
[8] Xie H Q and Liu P K 2006 Chin. Phys. 15 2042
[9] Smirnova E I, Carlsten B E and Earley L M 2008 IEEE Trans. Plasma Sci. 36 763
[10] Peng W F, Hu Y L, Yang Z H, Li J Q, Lu Q R and Li B 2011 Chin. Phys. B 20 028401
[11] Li Z L, Feng J J, Wang E F and Liu B T 2010 Vacuum Electronics 52 41 (in Chinese)
[12] Wang Y 2004 J. Appl. Opt. 25 57 (in Chinese)
[13] Guo J H, Yu S, Li H F, Zhang T Z, Lei C J, Li X and Zhang Y Y 2011 Acta Phys. Sin. 60 090301 (in Chinese)
[14] Chong C K, Dawson R C, Forster J W, Le Borgne R H, Ramay M L, Stolz R J and Tamashiro R N 2008 Proc. IEEE Int. Vac. Electron. Conf., April 22-24, 2008, Monterey, USA, p. 191
[15] Boshch E, Christ R, Lefevre M, Racamier J, Rupp H, Tribout J and Jarno J 2009 Proc. IEEE Int. Vac. Electron. Conf., April 28-30, 2009, Rome, Italy, p. 70
[16] Machida T, Suzuki W, Yoshida M, Matsuoka J and Tsutaki K 2011 Proc. IEEE Int. Vac. Electron. Conf., February 21-24, 2011, Bangalor, India, p. 17
[17] Chong C K, Davis J A, Borgne R H L, Ramay M L, Stolz R J, Tamashiro R N, Vaszari J P and Zhai X L 2005 IEEE Trans. Electron Dev. 52 653
[18] Wei Y Y, Liu L W, Gong Y Y, Xu X, Yin H R, Yue L N, Liu Y and Wang W X, U.S. Patent 13 345 121
[19] Liu L W, Wei Y Y, Xu X, Shen F, Zhao G Q, Huang M Z, Tang T, Wang W X and Gong Y B 2012 Proc. 5th Global Symposium on Millimeter Waves Conf., May 27-30, 2012, Harbin, China, p. 312
[20] Ansoft ANSYS, Inc., Analysis Guide, Release 14.0, 2012
[21] Ansoft Corp., Ansoft HFSS User’s Reference,http://www.ansoft.com.cn/
[22] CST Corp., CST MWS Tutorials [online] available: http://www.cst-china.cn/
[23] CST Corp., CST PS Tutorials [online] available: http://www.cst-china.cn/
[24] Han Y, Liu Y W, Ding Y G and Liu P K 2008 IEEE Electron Dev. Lett. 29 955
[25] Han Y, Liu Y W, Ding Y G and Liu P K 2009 Acta Phys. Sin. 58 1806 (in Chinese)
[26] Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O and Bhattacharjee S 2005 IEEE Trans. Electron Dev. 52 685
[27] Duan Z Y, Gong Y B, Lu M Y, Wei Y Y and Wang W X 2008 Chin. Phys. Lett. 25 934
[28] Srivastava V, Carter R G, Ravinder B, Sinha A K and Joshi S N 2000 IEEE Trans. Electron Dev. 47 2438
[29] Jung S S, Soukhov A V, Jia B F and Park G S 2002 Appl. Phys. Lett. 80 3000
[1] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[2] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[3] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[4] Linear theory of beam-wave interaction in double-slot coupled cavity travelling wave tube
Fang-ming He(何昉明), Wen-qiu Xie(谢文球), Ji-run Luo(罗积润), Min Zhu(朱敏), Wei Guo(郭炜). Chin. Phys. B, 2016, 25(3): 038401.
[5] A novel multi-pin rectangular waveguide slow-wave structure based backward wave amplifier at 340 GHz
Zhang Kai-Chun (张开春), Qi Zhong-Kuo (漆中阔), Yang Zhao-Long (杨召龙). Chin. Phys. B, 2015, 24(7): 079402.
[6] Design and development of high linearity millimeter wave traveling-wave tube for satellite communications
He Jun (何俊), Huang Ming-Guang (黄明光), Li Xian-Xia (李现霞), Li Hai-Qiang (李海强), Zhao Lei (赵磊), Zhao Jian-Dong (赵建东), Li Yue (李跃), Zhao Shi-Lei (赵石雷). Chin. Phys. B, 2015, 24(10): 104102.
[7] Study of a millimeter-wave squint indirect holographic algorithm suitable for imaging with large field-of-view
Gao Xiang (高翔), Li Chao (李超), Fang Guang-You (方广有). Chin. Phys. B, 2014, 23(2): 028401.
[8] Design of a reentrant double staggered ladder circuit for V-band coupled-cavity traveling-wave tube
Liu Yang(刘洋), Xu Jin(徐进), Lai Jian-Qiang(赖剑强), Xu Xiong(许雄), Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Huang Min-Zhi(黄民智), Tang Tao(唐涛), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(7): 074202.
[9] Research of sine waveguide slow-wave structure for a 220-GHz backward wave oscillator
Xu Xiong(许雄), Wei Yan-Yu(魏彦玉), Shen Fei(沈飞), Huang Min-Zhi(黄民智), Tang Tao(唐涛), Duan Zhao-Yun(段兆云), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(6): 068402.
[10] A staggered double vane circuit for a W-band traveling-wave tube amplifier
Lai Jian-Qiang(赖剑强), Wei Yan-Yu(魏彦玉), Liu Yang(刘洋), Huang Min-Zhi(黄民智), Tang Tao(唐涛), Wang Wen-Xiang(王文祥), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(6): 068403.
[11] Study on a W-band modified V-shaped microstrip meander-line traveling-wave tube
Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Xu Xiong(许雄), Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(6): 064210.
[12] An open-styled dielectric-lined azimuthally periodic circular waveguide for a millimeter wave traveling-wave tube
Liu Yang(刘漾), Wei Yan-Yu(魏彦玉), Xu Jin(徐进), Yin Hai-Rong(殷海荣), Yue Ling-Na(岳玲娜), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(4): 048403.
[13] Improvement of breakdown characteristics of AlGaN/GaN HEMT with U-type gate foot for millimeter-wave power application
Kong Xin (孔欣), Wei Ke (魏珂), Liu Guo-Guo (刘果果), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2012, 21(12): 128501.
[14] Linear theory of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam
Chen Ye (陈晔), Zhao Ding (赵鼎), Liu Wen-Xin (刘文鑫), Wang Yong (王勇), Wan Xiao-Sheng (万晓声). Chin. Phys. B, 2012, 21(10): 104103.
[15] Investigation of a wideband folded double-ridged waveguide slow-wave system
He Jun(何俊), Wei Yan-Yu(魏彦玉), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥). Chin. Phys. B, 2011, 20(5): 054102.
No Suggested Reading articles found!