CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values |
Ma Xiao-Hua (马晓华)a, Zhang Ya-Man (张亚嫚)a, Wang Xin-Hua (王鑫华)b, Yuan Ting-Ting (袁婷婷)b, Pang Lei (庞磊)b, Chen Wei-Wei (陈伟伟)a, Liu Xin-Yu (刘新宇)b |
a School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China; b Key Laboratory of Microelectronics Device & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract In this paper, the off-state breakdown characteristics of two different AlGaN/GaN high electron mobility transistors (HEMTs), featuring a 50-nm and a 150-nm GaN thick channel layer, respectively, are compared. The HEMT with a thick channel exhibits a little larger pinch-off drain current but significantly enhanced off-state breakdown voltage (BVoff). Device simulation indicates that thickening the channel increases the drain-induced barrier lowering (DIBL) but reduces the lateral electric field in the channel and buffer underneath the gate. The increase of BVoff in the thick channel device is due to the reduction of the electric field. These results demonstrate that it is necessary to select an appropriate channel thickness to balance DIBL and BVoff in AlGaN/GaN HEMTs.
|
Received: 04 July 2014
Revised: 05 September 2014
Accepted manuscript online:
|
PACS:
|
71.55.Eq
|
(III-V semiconductors)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
85.30.-z
|
(Semiconductor devices)
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project supported by the Program for New Century Excellent Talents in University (Grant No. NCET-12-0915) and the National Natural Science Foundation of China (Grant Nos. 61334002 and 61204086). |
Corresponding Authors:
Liu Xin-Yu
E-mail: xyliu@ime.ac.cn
|
Cite this article:
Ma Xiao-Hua (马晓华), Zhang Ya-Man (张亚嫚), Wang Xin-Hua (王鑫华), Yuan Ting-Ting (袁婷婷), Pang Lei (庞磊), Chen Wei-Wei (陈伟伟), Liu Xin-Yu (刘新宇) Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values 2015 Chin. Phys. B 24 027101
|
[1] |
Dmitriev V A, Irvine1 K G, Carter C H, Jr, Kuznetsov N I and Kalinina E V 1996 Appl. Phys. Lett. 68 229
|
[2] |
Duan B X and Yang Y T 2012 Chin. Phys. B 21 057201
|
[3] |
Lu B, Piner E L and Palacios T 2010 68th Annual Device Research Conference, June 21-23, 2010, South Bend, USA, p. 193
|
[4] |
Nakao T, Ohno Y, Kishimoto S, Maezawa K and Mizutani T 2003 Phys. Stat. Sol. 7 2335
|
[5] |
Eldad B T, Oliver H, Fank B, Joachim W and Günther T 2009 Phys. Stat. Sol. 6 1373
|
[6] |
Yang S, Zhou C H, Jiang Q M, Lu J B, Huang B L and Chen K J 2014 Appl. Phys. Lett. 104 013504
|
[7] |
Joachim W, Oliver H, Eldad B T, Rimma Z, Przemyslaw K, Olaf K, Frank B and Markus W 2013 Phys. Stat. Sol. (c) 10 1393
|
[8] |
Meneghini M, Cibin G, Bertin M, Hurkx G A M, Ivo P, Sonsky J, Croon J A, Meneghesso G and Enrico Z 2014 IEEE Trans. Electron. Dev. 61 1987
|
[9] |
Schimizzi R D, Trew R J and Bilbro G L 2012 IEEE Trans. Electron. Dev. 59 2937
|
[10] |
Zhao S L, Chen W W, Yue T, Wang Y, Luo J, Mao W, Ma X H and Hao Y 2013 Chin. Phys. B 22 117303
|
[11] |
Li M, Wang Y, Wang K M and Lau J M 2014 Chin. Phys. B 23 038403
|
[12] |
Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra U K and Speck J S 2004 J. Vac. Sci. Technol. A 22 1145
|
[13] |
Chevtchenko S A, Brunner F, Würfl J and Tränkle G 2010 Phys. Stat. Sol. 207 1505
|
[14] |
Micovic M, Hashimoto P, Hu Ming, Milosavljevic I, Duvall J, Willadsen P J, Wong W S, Conway A M, Kurdoghlian A, Deelman P W, Jeong S M, Schmitz A and Delaney M J 2004 IEEE IEDM Tech. Dig., December 13-15, 2004, New York, USA, p. 807
|
[15] |
Uren M J, Moreke J and Kuball M 2012 IEEE Trans. Electron. Dev. 59 3327
|
[16] |
Wang X H, Huang S, Zheng Y K, Wei K, Chen X J, Zhang H. X and Liu X Y 2014 IEEE Trans. Electron. Dev. 61 1341
|
[17] |
Hinoki A, Kikawa J, Yamada T, Tsuchiya T, Kamiya S, Kurouchi M, Kenichi K, Araki T, Suzuki A and Nanishi Y 2008 Appl. Phys. Express 1 011103
|
[18] |
Zhang X J, Yang Y T, Duan B X, Chai C C, Song K and Chen B 2012 Chin. Phys. B 21 097302
|
[19] |
Lee U G and Jin J 2011 IEEE Electron. Dev. Lett. 32 1233
|
[20] |
Yamada T, Nakajima Y, Hanajiri T and Sugano T 2013 IEEE Trans. Electron. Dev. 60 4281
|
[21] |
Wang C H and Zhang P F 1999 IEEE Trans. Electron. Dev. 46 139
|
[22] |
Marcon D, Viaene J, Favia P, Bender H, Kang X, Lenci S, Stoffels S and Decoutere S 2012 Microelectronics Reliability 52 2188
|
[23] |
Faqir M, Verzellesi G, Meneghesso G and Zanoni E 2008 IEEE Trans. Electron. Dev. 55 1592
|
[24] |
Ivo P, Glowacki A, Bahat-Treidel E, Lossy R, Würfl J, Boit C and Tränkle G 2011 Microelectronics Reliability 51 217
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|