ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Study on a W-band modified V-shaped microstrip meander-line traveling-wave tube |
Shen Fei(沈飞), Wei Yan-Yu(魏彦玉)†, Xu Xiong(许雄), Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) |
National Key Laboratory of Science and Technology on Vacuum Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract The study on a miniaturized, low-voltage, wide-bandwidth, high-efficiency modified V-shaped microstrip meander-line slow-wave structure is presented. This structure is evolved from the original U-shaped microstrip meander-line slow-wave structure, combining the advantages of a traditional microstrip and a rectangular helix. In this paper, simulations of the electromagnetic characteristics and the beam-wave interaction of this structure are carried out. Our study shows that when the design voltage and the current of a sheet electron beam are set to be 4700 V and 100 mA, respectively, this miniature millimeter-wave power amplifier is capable of delivering 160-W output power with a corresponding gain of 37.3 dB and a maximum interaction efficiency of 34% at 97 GHz.
|
Received: 10 August 2011
Revised: 08 October 2011
Accepted manuscript online:
|
PACS:
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
07.57.Hm
|
(Infrared, submillimeter wave, microwave, and radiowave sources)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60971038) and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2009Z003). |
Corresponding Authors:
Wei Yan-Yu
E-mail: yywei@uestc.edu.cn
|
Cite this article:
Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Xu Xiong(许雄), Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) Study on a W-band modified V-shaped microstrip meander-line traveling-wave tube 2012 Chin. Phys. B 21 064210
|
[1] |
Fen J J, Hu Y F, Cai J, Wu X P and Tang Y 2010 Vacuum Electronics 52 27 (in Chinese)
|
[2] |
Zhong K, Yao J Q, Xu D G, Zhang H Y and Wang P 2011 Acta Phys. Sin. 60 034210 (in Chinese)
|
[3] |
Guo Z, Fan F, Bai J J, Niu C and Chang S J 2011 Acta Phys. Sin. 60 074218 (in Chinese)
|
[4] |
Fen J J, Cai J, Hu Y F, Wu X P, Ma S Y and Qu B 2009 Proc. Institute of Chinese Electronics Conf. on Microwave Tubes September 12-15, 2009, Yichang, China p. 5 (in Chinese)
|
[5] |
He J, Wei Y Y, Gong Y B and Wang W X 2010 Acta Phys. Sin. 59 2843 (in Chinese)
|
[6] |
He J, Wei Y Y, Gong Y B and Wang W X 2010 Acta Phys. Sin. 59 6659 (in Chinese)
|
[7] |
He J, Wei Y Y, Gong Y B and Wang W X 2011 Chin. Phys. B 20 054102
|
[8] |
Gao X, Yang Z Q, Cao W P and Jiang Y N 2011 Chin. Phys. B 20 030703
|
[9] |
Jiang B, Zhang Y J, Zhou W J, Chen W, Liu A J and Zheng W H 2011 Chin. Phys. B 20 024208
|
[10] |
Hu Y T, Xiao X, Li Z Y, Li Y T, Fan Z C, Han W H, Yu Y D and Yu J Z 2011 Chin. Phys. B 20 074208
|
[11] |
Huang J, Dong J R, Yang H, Zhang H Y, Tian C and Guo T Y 2011 Chin. Phys. B 20 060702
|
[12] |
Xie H Q and Liu P K 2006 Chin. Phys. 15 2042
|
[13] |
Peng W F, Hu Y L, Yang Z H, Li J Q, Lu Q R and Li B 2011 Chin. Phys. B 20 028401
|
[14] |
Peng W F, Hu Y L, Yang Z H, Li J Q, Lu Q R and Li B 2011 Chin. Phys. B 20 078401
|
[15] |
Kory C L, Dayton J A, Mearini G T, Malta D, Lueck M, Gilchrist K and Vancil B 2009 Proc. IEEE Int. Vac. Electron. Conf., April 28-30, 2009, Rome, Italy p. 125
|
[16] |
Booske J H 2002 Proc. IEEE Int. Vac. Electron. Conf., April 23-25, 2002, Monterey, USA p. 11
|
[17] |
Sengele S, Jiang H R, Booske J H, Kory C L, Weide D W V and Ives R L 2009 IEEE Trans. Electron Dev. 56 730
|
[18] |
Fu C F, Wei Y Y, Duan Z Y, Wang W X and Gong Y B 2009 Chin. Phys. B 18 2749
|
[19] |
Fu C F, Wei Y Y, Duan Z Y, Wang W X and Gong Y B 2008 IEEE Trans. Electron Dev. 55 3582
|
[20] |
CST MWS Tutorials, CST Corp. [online] available: http://www.cst-china.cn/
|
[21] |
CST PS Tutorials, CST Corp. [online] available: http://www.cst-china.cn/
|
[22] |
Kory C L, Read M E, Ives R L, Booske J H and Borchard P 2009 IEEE Trans. Electron Dev. 56 713
|
[23] |
Chao Z and Stevens G C 2006 Proc. IEEE CEIDP, October 15-18, 2006. Lamsas. ISA p. 19
|
[24] |
Cai J, Feng J J, Wu X P, Hu Y F, Qu B, Huang M G and Ma S Y 2007 Proc. IEEE Int. Vacuum Electron. Conf., May 15-17, 2007, Kitakyushu, Japan p. 1
|
[25] |
Baig A, Wang J X, Barnett L R, Luhmann N J and Shin Y M 2011 Proc. IEEE Int. Vac. Electron. Conf., February 21-24, 2011, Bangalore, India p. 351
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|