Abstract Based on the coherent interaction and action-counteraction principles, we investigate the ground state properties for small polaron systems, the coherent-squeezed fluctuation correction, and the anomalous lattice quantum fluctuation, with the new variational generator containing correlated squeezed-coherent coupling and quantum entanglement. Noting that is the T.B.A. energy, for the coherent interaction effect, we find the ground-state energy to be , in which the coherent squeezed fluctuation correction is (where is the hopping integral, is the phonon frequency), with the electron-one-phonon coupling constant 1 and the electron-two-phonon coupling constant . However, as a result of the action-counteraction effect, is , but is . As to the polaron binding energy , for the coherent interaction effect, is , but for the action-counteraction effect, is . In particular, the electron-two-phonon interaction noticeably enlarges the coherent interaction and the coherent squeezed quantum fluctuation correction. By intervening with the quantum entanglement, the evolutions of the squeezed coherent state and the lattice quantum fluctuation begin to take control. At that time, we encounter a new quantum phase coherence phenomenon — the collapse and revival of inversion repeatedly for the coherent state in the entangled evolution.
(Metal-insulator transitions and other electronic transitions)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10574163).
Corresponding Authors:
Zhi-Hua Luo
E-mail: lo-zh@126.com
Cite this article:
Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡) Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties 2022 Chin. Phys. B 31 117104
[1] Holstein T 1959 Ann. Phys.8 325 [2] Fradkin E and Hirsch J E 1983 Phys. Rev. B27 1680 [3] Hirsch J E and Fradkin E 1983 Phys. Rev. B27 4302 [4] Hirsch J E 1985 Phys. Rev. B31 6022 [5] Nasu K 1988 Phys. Rev. B37 5075 [6] Slusher R E, Yurke B, Grangier P, Lapport A, Wells D F and Reid N 1987 J. Opt. Soc. Am. B4 1453 [7] Jiang Q Y, Li S, Thomas F G, et al. 2010 Chin. Phys. Lett.27 107301 [8] Salamon M B and Jaime M 2001 Rev. Mod. Phys.73 583 [9] McQueeney R J, Sarrao J L, Pagliuso P G, Stephens P W and Osborn R 2001 Phys. Rev. Lett.87 077001 [10] Datta S, Das A and Yarlagadda S 2005 Phys. Rev. B71 235118 [11] Weibe A and Fehske H 2004 New J. Phys.6 158 [12] Tajima S, Fudmoto Y, Kakeshiha T and Uchida S 2005 Phys. Rev. B71 094508 [13] Gunnarsson O 1997 Rev. Mod. Phys.69 575 [14] Alexandre S S, Artacho E, Soler J M and Chacham H 2003 Phys. Rev. Lett.91 108105 [15] Fröhlich H 1954 Adv. Phys.3 325 [16] Kuper C G and Whitfield G D 1962 Polarons and Excitons (New York: Plenum Press) [17] Ren X Z, Huang S W, Liao X, et al. 2009 Acta Phys. Sin.58 2680 (in Chinese) [18] Fratini S and Quémerais P 2002 Eur. Phys. J. B29 41 [19] Fratini S, de Pasquale F and Ciuchi S 2001 Phys. Rev. B63 153101 [20] Lemmens L F, Brosens F and Devreese J T 1996 Phys. Rev. E53 4467 [21] Lemmens L F, Brosens F and Devreese J T 1999 Solid State Commun.109 615 [22] Klimin S N, Fomin V M, Brosens F and Devreese J T 2004 Physica E22 494 [23] Klimin S N, Fomin V M, Brosens F and Devreese J T 2004 Phys. Rev. B69 235324 [24] Perroni C A, Cataudella V, de Filippis G and Marigliano Ramaglia V 2005 Phys. Rev. B71 054301 [25] Brosens F, Klimin S N and Devreese J T 2005 Phys. Rev. B71 214301 [26] Bon?a J, Trugman S A and Batistic I 1999 Phys. Rev. B60 1633 [27] Baristic O S 2002 Phys. Rev. B65 11430 [28] Cataudella V, De Filippis G and Iadonisi 2000 Phys. Rev. B62 1496 [29] Zhang C, Jeckelmann E and White S R 1999 Phys. Rev. B60 14092 [30] Wellein G and Fehske H 1997 Phys. Rev. B56 4513 [31] Fehske H, Loos J and Wellein G 2000 Phys. Rev. B61 8016 [32] Wang K L, Chen Q H and Wan S L 1994 Phys. Lett. A185 216 [33] Chen Q H, Fang M H and Zhang Q R 1996 Phys. Rev. B53 11296 [34] Kornilovitch P E 2000 Phys. Rev. Lett.84 1551 [35] Wan S L and Wang K L 2000 Chin. Phys. Lett.17 129 [36] Ren Q B and Chen Q H 2005 Chin. Phys. Lett.22 2914 [37] Ivanov V A, Zhuravlev M Y, Muragama Y and Nakajima S 1996 JETP Lett.64 148 [38] Ren X Z, Liao X, Liu T and Wang K L 2006 Acta. Phys. Sin.55 2865 (in Chinese) [39] Liang X X and Ban S L 2004 Chin. Phys. B13 71 [40] Wang Z G, Duan S Q and Zhao Z G 2005 Chin. Phys. B14 1332 [41] Liu W Y, An Y Y and Yan Z Y 2007 Chin. Phys. B16 3704 [42] Zheng H 1988 Phys. Rev. B37 7419 [43] Zheng H, Feinberg D and Avignon M 1989 Phys. Rev. B39 9405 [44] Feinberg D, Ciuchi S and Pasquale F D 1990 Int. J. Mode. Phys. B04 1317 [45] Luo Z H, Yu C F and Lin Q W 2011 Acta Phys. Sin.60 057104 (in Chinese) [46] Luo Z H, Cao Z J and Yu C F 2011 Chin. Phys. B20 067103 [47] Luo Z H and Liang G D 2012 Acta Phys. Sin.61 057303 (in Chinese) [48] Luo Z H 2013 Acta Phys. Sin.62 207201 (in Chinese) [49] Pang X F 1999 Phys. Lett. A259 466 [50] Pang X F 2001 J. Phys. Chem. Solids62 491
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.