|
|
First-principles study of the bandgap renormalization and optical property of β-LiGaO2 |
Dangqi Fang(方党旗)† |
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract The $\beta$-LiGaO$_{2}$ with an orthorhombic wurtzite-derived structure is a candidate ultrawide direct-bandgap semiconductor. In this work, using the non-adiabatic Allen-Heine-Cardona approach, we investigate the bandgap renormalization arising from electron-phonon coupling. We find a sizable zero-point motion correction of $-0.362 $ eV to the gap at $\varGamma $, which is dominated by the contributions of long-wavelength longitudinal optical phonons. The bandgap of $\beta $-LiGaO$_{2}$ decreases monotonically with increasing temperature. We investigate the optical spectra by comparing the model Bethe-Salpether equation method with the independent-particle approximation. The calculated optical spectra including electron-hole interactions exhibit strong excitonic effects, in qualitative agreement with the experiment. The contributing interband transitions and the binding energy for the excitonic states are analyzed.
|
Received: 01 November 2022
Revised: 18 December 2022
Accepted manuscript online: 27 December 2022
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
72.80.Jc
|
(Other crystalline inorganic semiconductors)
|
|
Fund: Project support from the National Natural Science Foundation of China (Grant No. 11604254) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JQ-240). We also acknowledge the HPCC Platform of Xi'an Jiaotong University for providing the computing facilities. |
Corresponding Authors:
Dangqi Fang
E-mail: fangdqphy@xjtu.edu.cn
|
Cite this article:
Dangqi Fang(方党旗) First-principles study of the bandgap renormalization and optical property of β-LiGaO2 2023 Chin. Phys. B 32 047101
|
[1] Chou M M C, Chen C, Hang D R and Yang W T 2011 Thin Solid Films 519 5066 [2] Chou M M C, Hang D R, Chen C and Liao Y H 2011 Thin Solid Films 519 3627 [3] Xu K, Deng P, Xu J, Zhou G, Liu W and Tian Y 2000 J. Cryst. Growth 216 343 [4] Li G, Mu S and Shih S J 2010 Materials Science and Engineering: B 170 9 [5] Omata T, Tanaka K, Tazuke A, Nose K and Otsuka-Yao-Matsuo S 2008 J. Appl. Phys. 103 083706 [6] Suzuki I, Mizuno Y and Omata T 2019 Inorg. Chem. 58 4262 [7] Boonchun A, Dabsamut K and Lambrecht W R L 2019 J. Appl. Phys. 126 155703 [8] Dabsamut K, Boonchun A and Lambrecht W R L 2020 J. Phys. D: Appl. Phys. 53 274002 [9] Johnson N W, McLeod J A and Moewes A 2011 J. Phys.: Condens. Matter 23 445501 [10] Chen C, Li C A, Yu S H and Chou M M C 2014 J. Cryst. Growth 402 325 [11] Tumėnas S, Mackonis P, Nedzinskas R, Trinkler L, Berzina B, Korsaks V, Chang L and Chou M M C 2017 Appl. Surf. Sci. 421 837 [12] Trinkler L, Trukhin A, Berzina B, Korsaks V, Ščajev P, Nedzinskas R, Tumėnas S, Chou M M C, Chang L and Li C A 2017 Opt. Mater. 69 449 [13] Boonchun A and Lambrecht W R L 2010 Phys. Rev. B 81 235214 [14] Radha S K, Ratnaparkhe A and Lambrecht W R L 2021 Phys. Rev. B 103 045201 [15] Karsai F, Engel M, Flage-Larsen E and Kresse G 2018 New J. Phys. 20 123008 [16] Monserrat B, Dreyer C E and Rabe K M 2018 Phys. Rev. B 97 104310 [17] Nery J P, Allen P B, Antonius G, Reining L, Miglio A and Gonze X 2018 Phys. Rev. B 97 115145 [18] Miglio A, Brousseau-Couture V, Godbout E, Antonius G, Chan Y H, Louie S G, Côté M, Giantomassi M and Gonze X 2020 npj Comput. Mater. 6 167 [19] Zacharias M and Giustino F 2020 Phys. Rev. Research 2 013357 [20] Shang H, Zhao J and Yang J 2021 J. Phys. Chem. C 125 6479 [21] Verdi C and Giustino F 2015 Phys. Rev. Lett. 115 176401 [22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [23] Blöchl P E 1994 Phys. Rev. B 50 17953 [24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [25] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406 [26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [27] Shishkin M and Kresse G 2007 Phys. Rev. B 75 235102 [28] Gonze X, Amadon B, Antonius G, et al. 2020 Comput. Phys. Commun. 248 107042 [29] Gonze X, Amadon B, Anglade P M, et al. 2009 Comput. Phys. Commun. 180 2582 [30] van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X and Rignanese G M 2018 Comput. Phys. Commun. 226 39 [31] Giustino F 2017 Rev. Mod. Phys. 89 015003 [32] Romero A H, Allan D C, Amadon B, et al. 2020 J. Chem. Phys. 152 124102 [33] Eiguren A and Ambrosch-Draxl C 2008 Phys. Rev. B 78 045124 [34] Brown-Altvater F, Antonius G, Rangel T, Giantomassi M, Draxl C, Gonze X, Louie S G and Neaton J B 2020 Phys. Rev. B 101 165102 [35] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112 [36] Nishiwaki M and Fujiwara H 2020 Comput. Mater. Sci. 172 109315 [37] Fang D 2021 J. Appl. Phys. 130 225703 [38] Albrecht S, Reining L, Del Sole R and Onida G 1998 Phys. Rev. Lett. 80 4510 [39] Rohlfing M and Louie S G 1998 Phys. Rev. Lett. 81 2312 [40] Bokdam M, Sander T, Stroppa A, Picozzi S, Sarma D D, Franchini C and Kresse G 2016 Sci. Rep. 6 28618 [41] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033 [42] Cardona M and Thewalt M L W 2005 Rev. Mod. Phys. 77 1173 [43] Fröhlich H 1954 Advances in Physics 3 325 [44] Bhosale J, Ramdas A K, Burger A, Muñoz A, Romero A H, Cardona M, Lauck R and Kremer R K 2012 Phys. Rev. B 86 195208 [45] Roessler D M and Walker W C 1967 Phys. Rev. 159 733 [46] Fuchs F, Rödl C, Schleife A and Bechstedt F 2008 Phys. Rev. B 78 085103 [47] Filip M R, Haber J B and Neaton J B 2021 Phys. Rev. Lett. 127 067401 [48] Whited R C, Flaten C J and Walker W C 1973 Solid State Commun. 13 1903 [49] Grosso G and Pastori Parravicini G 2014 Solid State Physics, 2nd edn. (Amsterdam: Academic Press) p. 295 [50] Sio W H, Verdi C, Poncé S and Giustino F 2019 Phys. Rev. B 99 235139 [51] Sio W H, Verdi C, Poncé S and Giustino F 2019 Phys. Rev. Lett. 122 246403 [52] Lafuente-Bartolome J, Lian C, Sio W H, Gurtubay I G, Eiguren A and Giustino F 2022 Phys. Rev. Lett. 129 076402 [53] Lafuente-Bartolome J, Lian C, Sio W H, Gurtubay I G, Eiguren A and Giustino F 2022 Phys. Rev. B 106 075119 [54] Marezio M 1965 Acta Crystallogr. 18 481 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|