CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Polarization Raman spectra of graphene nanoribbons |
Wangwei Xu(许望伟)1,†, Shijie Sun(孙诗杰)1,†, Muzi Yang(杨慕紫)2, Zhenliang Hao(郝振亮)1, Lei Gao(高蕾)3, Jianchen Lu(卢建臣)1, Jiasen Zhu(朱嘉森)2, Jian Chen(陈建)2,‡, and Jinming Cai(蔡金明)1,§ |
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650000, China; 2 School of Materials Science and Engineering, Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China; 3 Faculty of Science, Kunming University of Science and Technology, Kunming 650000, China |
|
|
Abstract The on-surface synthesis method allows the fabrication of atomically precise narrow graphene nanoribbons (GNRs), which bears great potential in electronic applications. Here, we synthesize armchair graphene nanoribbons (AGNRs) and chevron-type graphene nanoribbons (CGNRs) array on a vicinal Au(11 11 12) surface using 10,10'-dibromo-9,9'-bianthracene (DBBA) and 6,12-dibromochrysene (DBCh) as precursors, respectively. This process creates spatially well-aligned GNRs, as characterized by scanning tunneling microscopy. AGNRs show strong Raman linear polarizability for application in optical modulation devices. Different from the distinct polarization of AGNRs, only weak polarization exists in CGNRs polarized Raman spectrum, which suggests that the presence of the zigzag boundary in the nanoribbon attenuates the polarization rate as an important factor affecting the polarization. We analyze the Raman activation mode of CGNRs using the peak polarization to expand the application of the polarization Raman spectroscopy in nanoarray analysis.
|
Received: 29 April 2022
Revised: 23 June 2022
Accepted manuscript online: 13 July 2022
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
78.67.Wj
|
(Optical properties of graphene)
|
|
81.05.ue
|
(Graphene)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61901200), the Yunnan Fundamental Research Projects (Grant Nos. 2019FD041, 202101AU070043, 202101AV070008, and 202101AW070010), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. NXDB30010000), and the Dongguan Innovation Research Team Program. |
Corresponding Authors:
Jian Chen, Jinming Cai
E-mail: puscj@mail.sysu.edu.cn;j.cai@kust.edu.cn
|
Cite this article:
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明) Polarization Raman spectra of graphene nanoribbons 2023 Chin. Phys. B 32 046803
|
[1] Cai J, Ruffieux- P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K and Fasel R 2010 Nature 466 470 [2] Cai J, Pignedoli C A, Talirz L, Ruffieux P, Sode H, Liang L, Meunier V, Berger R, Li R, Feng X, Mullen K and Fasel R 2014 Nat. Nanotechnol. 9 896 [3] Groning O, Wang S, Yao X, Pignedoli C A, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Mullen K, Ruffieux P and Fasel R 2018 Nature 560 209 [4] Driver S M, Toomes R L and Woodruff D P 2016 Surf. Sci. 646 114 [5] Sun S, Guan Y, Hao Z, Ruan Z, Zhang H, Lu J, Gao L, Zuo X and Cai J 2022 Nano Res. 15 653 [6] Yang H, Cao Y, Gao Y, Fu Y, Huang L, Liu J, Feng X, Du S and Gao H-J 2021 Chin. Phys. B 30 056802 [7] Wang X Y, Urgel J I, Barin G B, Eimre K, Di Giovannantonio M, Milani A, Tommasini M, Pignedoli C A, Ruffieux P, Feng X, Fasel R, Mullen K and Narita A 2018 J. Am. Chem. Soc. 140 9104 [8] Su X, Xue Z, Li G and Yu P 2018 Nano Lett. 18 5744 [9] Slota M, Keerthi A, Myers W K, Tretyakov E, Baumgarten M, Ardavan A, Sadeghi H, Lambert C J, Narita A, Mullen K and Bogani L 2018 Nature 557 691 [10] Denk R, Hohage M, Zeppenfeld P, Cai J, Pignedoli C A, Sode H, Fasel R, Feng X, Mullen K, Wang S, Prezzi D, Ferretti A, Ruini A, Molinari E and Ruffieux P 2014 Nat. Commun. 5 4253 [11] Sun K, Ji P, Zhang J, Wang J, Li X, Xu X, Zhang H and Chi L 2019 Small 15 1804526 [12] Qin J, Xia S, Jia K, Wang C T, Tang T T, Lu H P, Zhang L, Zhou P H, Peng B, Deng L J and Bi L 2018 Apl Photonics 3 016103 [13] Ohtomo M, Sekine Y, Hibino H and Yamamoto H 2018 Appl. Phys. Lett. 112 021602 [14] Overbeck J, Barin G B, Daniels C, Perrin M L, Liang L B, Braun O, Darawish R, Burkhardt B, Dumslaff T, Wang X Y, Narita A, Mullen K, Meunier V, Fasel R, Calame M and Ruffieux P 2019 Phys. Status Solidi B 256 1900343 [15] Linden S, Zhong D, Timmer A, Aghdassi N, Franke J H, Zhang H, Feng X, Mullen K, Fuchs H, Chi L and Zacharias H 2012 Phys. Rev. Lett. 108 216801 [16] Passi V, Gahoi A, Senkovskiy B V, Haberer D, Fischer F R, Gruneis A and Lemme M C 2018 ACS Appl. Mater. Interfaces 10 9900 [17] Cong C, Yu T and Wang H 2010 ACS Nano 4 3175 [18] Ferreira E H M, Moutinho M V O, Stavale F, Lucchese M M, Capaz R B, Achete C A and Jorio A 2010 Phys. Rev. B 82 125429 [19] Verzhbitskiy I A, Corato M D, Ruini A, Molinari E, Narita A, Hu Y, Schwab M G, Bruna M, Yoon D, Milana S, Feng X, Mullen K, Ferrari A C, Casiraghi C and Prezzi D 2016 Nano Lett. 16 3442 [20] Annese E, Viol C E, Zhou B, Fujii J, Vobornik I, Baldacchini C, Betti M G and Rossi G 2007 Surf. Sci. 601 4242 [21] Luo G F, Wang L, Li H, Qin R, Zhou J, Li L Z, Gao Z X, Mei W N, Lu J and Nagase S 2011 J. Phys. Chem. C 115 24463 [22] Fritton M, Duncan D A, Deimel P S, Rastgoo-Lahrood A, Allegretti F, Barth J V, Heckl W M, Bjork J and Lackinger M 2019 J. Am. Chem. Soc. 141 4824 [23] Senkovskiy B V, Pfeiffer M, Alavi S K, Bliesener A, Zhu J, Michel S, Fedorov A V, German R, Hertel D, Haberer D, Petaccia L, Fischer F R, Meerholz K, van Loosdrecht P H M, Lindfors K and Gruneis A 2017 Nano Lett. 17 4029 [24] Malard L M, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009 Phys. Rep. 473 51 [25] Sasaki K, Yamamoto M, Murakami S, Saito R, Dresselhaus M S, Takai K, Mori T, Enoki T and Wakabayashi K 2009 Phys. Rev. B 80 155450 [26] Saito R, Furukawa M, Dresselhaus G and Dresselhaus M S 2010 J. Phys. Condens Matter 22 334203 [27] Gillen R, Mohr M and Maultzsch J 2010 Phys. Status Solidi B 247 2941 [28] Vandescuren M, Hermet P, Meunier V, Henrard L and Lambin P 2008 Phys. Rev. B 78 195401 [29] Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. B 94 075104 [30] Frank O, Mohr M, Maultzsch J, Thomsen C, Riaz I, Jalil R, Novoselov K S, Tsoukleri G, Parthenios J, Papagelis K, Kavan L and Galiotis C 2011 ACS Nano 5 2231 [31] Ferrari A C and Rbertson J 2000 Phys. Rev. B 61 14095 [32] Mohiuddin T, Lombardo A, Nair R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D, Galiotis C and Marzari N 2009 Phys. Rev. B 79 205433 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|