|
|
Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas |
Jian Feng(冯鉴)1, Wei-Wei Zhang(张伟伟)1, Liang-Wei Lin(林良伟)1, Qi-Peng Cai(蔡启鹏)1, Yi-Cai Zhang(张义财)2, Sheng-Can Ma(马胜灿)1, and Chao-Fei Liu(刘超飞)1,† |
1 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China; 2 School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China |
|
|
Abstract Topological superfluid state is different from the normal superfluid one due to the excitation energy gap on the boundary. How to obtain the topological superfluid state by using spin-orbit coupling to control the s-waves paired mass-imbalanced Fermi gas is a recent novel topic. In this paper, we study the topological superfluid phase diagram of two-dimensional mass-imbalanced Fermi gas with Rashba spin-orbit coupling at zero temperature. We find that due to the competition among mass imbalance, pairing interaction and spin-orbit coupling, there is a double-well structure in the thermodynamic potential, which affects the properties of the ground state of the system. We comprehensively give the phase diagrams of the system on the plane of spin-orbit coupling and chemical potential, and the phase diagrams on the plane of the reduced mass ratio and two-body binding energy. This study not only points out the stable region of topological superfluid state of mass-imbalanced Fermi gas, but also provides a detailed theoretical basis for better observation of topological superfluid state in experiments.
|
Received: 20 December 2021
Revised: 21 March 2022
Accepted manuscript online: 20 April 2022
|
PACS:
|
03.75.Ss
|
(Degenerate Fermi gases)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875149, 11874127, 52061014, and 61565007), the Youth Jing-gang Scholars Program of Jiangxi Province, China and the Program of Qing-jiang Excellent Young Talents, Jiangxi University of Science and Technology. |
Corresponding Authors:
Chao-Fei Liu
E-mail: liuchaofei@jxust.edu.cn
|
Cite this article:
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞) Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas 2022 Chin. Phys. B 31 090305
|
[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [2] Zhang C, Tewari S, Lutchyn R M and Das Sarma S 2008 Phys. Rev. Lett. 101 160401 [3] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502 [4] Kubasiak A, Massignan P and Lewenstein M 2010 Europhys. Lett. 92 46004 [5] Tewari S, Stanescu T D, Sau J D and Das Sarma S 2011 New J. Phys. 13 065004 [6] Vyasanakere J P, Zhang S and Shenoy V B 2011 Phys. Rev. B 84 014512 [7] Yu Z Q and Zhai H 2011 Phys. Rev. Lett. 107 195305 [8] Gong M, Tewari S and Zhang C 2011 Phys. Rev. Lett. 107 195303 [9] Iskin M and Subasi A L 2011 Phys. Rev. Lett. 107 050402 [10] Yi W and Guo G C 2011 Phys. Rev. A 84 031608 [11] Yang X S and Wan S L 2012 Phys. Rev. A 85 023633 [12] Zhou J, Zhang W and Yi W 2011 Phys. Rev. A 84 063603 [13] Yi W and Duan L M 2006 Phys. Rev. A 74 013610 [14] Iskin M and Sade Melo C A R 2006 Phys. Rev. Lett. 97 100404 [15] Parish M M, Marchetti F M, Lamacraft A and Simons B D 2007 Nat. Phys. 3 124 [16] Wu F, Guo G C, Zhang W and Yi W 2016 Phys. Rev. Lett. 110 110401 [17] Cui J X, Liu X J, Long G L and Hu H 2012 Phys. Rev. A 86 053628 [18] Yi W and Zhang W 2012 Phys. Rev. Lett. 109 140402 [19] Zheng Z, Pu H, Zou X B and Guo G C 2014 Phys. Rev. A 90 063623 [20] Qiu X Z, Cui X L and Yi W 2016 Phys. Rev. A 94 051604 [21] Huang L H, Peng P, Li D H, Meng Z M, Chen L C, Qu C L, Wang P J, Zhang C W and Zhang J 2018 Phys. Rev. A 98 013615 [22] Feng X J and Y L 2020 Chin. Phys. Lett. 37 020301 [23] Guo G F, Bao X X, Tan L and Gu H Q 2021 Chin. Phys. Lett. 38 040302 [24] Iskin M 2021 Phys. Rev. A 103 023337 [25] Zwierlein M W, Schirotzek A, Schunck C H and Ketterle W 2006 Science 311 492 [26] Partridge G B, Li W H, Kamar R I, Liao Y A and Hulet R G 2006 Science 311 503 [27] Shin Y, Schunck C H, Schirotzek A and W Ketterle 2008 Nature 451 689 [28] Navon N, Nascimbéne S, Chevy F and Salomon C 2010 Science 328 729 [29] Voigt A C, Taglieber M, Costa L, Aoki T, Wieser W, Hänsch T W and Dieckmann K 2009 Phys. Rev. Lett. 102 020405 [30] Spiegelhalder F M, Trenkwalder A, Naik D, Hendl G, Schreck F and Grimm R 2009 Phys. Rev. Lett. 103 223203 [31] Tiecke T G, Goosen M R, Ludewig A, Gensemer S D, Kraft S, Kokkelmans S J J M F and Walraven J T M 2010 Phys. Rev. Lett. 104 053202 [32] Ravensbergen C, Soave E, Corre V, Kreyer M, Huang B, Kirilov E and Grimm R 2020 Phys. Rev. Lett. 124 203402 [33] Iskin M and Subaşi A L 2011 Phys. Rev. A 84 041610 [34] Wang J B, Guo H and Chen Q J 2013 Phys. Rev. A 87 041601 [35] Sacha K and Delande D 2014 Phys. Rev. A 90 021604 [36] Sogaard C R and Bruun G M 2015 Phys. Rev. A 91 042702 [37] M Jag, Cetina M, Lous R S, Grimm R, Levinsen J and Petrov D S 2016 Phys. Rev. A 94 062706 [38] Scazza F, Valtolina G, Massignan P, Recati A, Amico A, Burchianti A, Fort C, Inguscio M, Zaccanti M and Roati G 2017 Phys. Rev. Lett. 118 083602 [39] Ravensbergen C, Corre V, Soave E, Kreyer M, Kirilov E and Grimm R 2018 Phys. Rev. A 98 063624 [40] Karmakar M 2018 Phys. Rev. A 97 033617 [41] Randeria M, Duan J M and Shieh L Y 1989 Phys. Rev. Lett. 62 981 [42] Sheehy D E and Radzihovsky L 2007 Ann. Phys. 322 1790 [43] Morf R and d'Ambrumenil N 1995 Phys. Rev. Lett. 74 5116 [44] Coleridge P T, Wasilewski Z W, Zawadzki P, Sachrajda A S and Car-mona H A 1995 Phys. Rev. B 52 R11603(R) [45] Jia W, Huang Z H, Wei X, Zhao Q and Liu X J 2019 Phys. Rev. B 99 094520 [46] Wang Y, Ji W T, Chai Z H, Guo Y H, Wang M Q, Ye X Y, Yu P, Zhang L, Qin X, Wang P F, Shi F Z, Rong X, Lu D W, Liu X J and Du J F 2019 Phys. Rev. A 100 052328 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|