Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050310    DOI: 10.1088/1674-1056/ac4101
GENERAL Prev   Next  

Phase-matching quantum key distribution with light source monitoring

Wen-Ting Li(李文婷)1, Le Wang(王乐)1,2, Wei Li(李威)1,2, and Sheng-Mei Zhao(赵生妹)1,2,†
1 Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing 210003, China
Abstract  The transmission loss of photons during quantum key distribution (QKD) process leads to the linear key rate bound for practical QKD systems without quantum repeaters. Phase matching quantum key distribution (PM-QKD) protocol, an novel QKD protocol, can overcome the constraint with a measurement-device-independent structure, while it still requires the light source to be ideal. This assumption is not guaranteed in practice, leading to practical secure issues. In this paper, we propose a modified PM-QKD protocol with a light source monitoring, named PM-QKD-LSM protocol, which can guarantee the security of the system under the non-ideal source condition. The results show that our proposed protocol performs almost the same as the ideal PM-QKD protocol even considering the imperfect factors in practical systems. PM-QKD-LSM protocol has a better performance with source fluctuation, and it is robust in symmetric or asymmetric cases.
Keywords:  phase-matching quantum key distribution      source fluctuation      light source monitoring  
Received:  10 August 2021      Revised:  12 November 2021      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  05.30.Rt (Quantum phase transitions)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  06.30.-k (Measurements common to several branches of physics and astronomy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61871234 and 62001249) and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University (Grant No.KF201909).
Corresponding Authors:  Sheng-Mei Zhao,     E-mail:
About author:  2021-12-8

Cite this article: 

Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹) Phase-matching quantum key distribution with light source monitoring 2022 Chin. Phys. B 31 050310

[1] Mayers D 2001 J. ACM 48 351
[2] Lo H K and Chau H F 1999 Science 283 2050
[3] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[4] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 175
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Wang X B 2005 Phys. Rev. A 72 012322
[7] Wang X B, Yang L, Peng C Z and Pan J W 2009 New J. Phys. 11 075006
[8] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[9] Wang L, Zhao S M, Gong L Y and Cheng W W 2015 Chin. Phys. B 24 120307
[10] Guan J Y, Cao Z, Liu Y, Shen-Tu G L, Pelc J S, Fejer M M, Peng C H, Ma X F, Zhang Q and Pan J W 2015 Phys. Rev. Lett. 114 180502
[11] Wang L and Zhao S M 2017 Quantum Inform. Process. 16 100
[12] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 1
[13] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[14] Tamaki K, Lo H K, Fung C H F and Qi B 2012 Phys. Rev. A 85 042307
[15] Chen G, Wang L, Li W, Zhao Y, Zhao S M and Gruska J 2020 Quantum Inform. Process. 19 416
[16] Teng J, Yin Z Q, Yuan Fan G J, L u F Y, Wang R, Wang S, Chen W, Huang W, Xu B J, Guo G C and Han Z F 2021 Phys. Rev. A 104 062441
[17] Wang X B, Yu Z W and Hu X L 2018 Phys. Rev. A 98 062323
[18] Xu H, Yu Z W, Jiang C, Hu X L and Wang X B 2020 Phys. Rev. A 101 042330
[19] Cui C, Yin Z Q, Wang R, Chen W, Wang S, Guo G C and Han Z F 2019 Phys. Rev. Appl. 11 034053
[20] Xue K, Zhao S M, Mao Q P and Xu R 2021 Quantum Inform. Process. 20 320
[21] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q and Pan J W 2021 Nat. Photonics 15 570
[22] Ma X, Zeng P and Zhou H 2018 Phys. Rev. X 8 031043
[23] Jin A, Zeng P, Penty R V and Ma X F 2021 Phys. Rev. Appl. 16 034017
[24] Wang X B 2007 Phys. Rev. A 75 052301
[25] Peng X, Jiang H, Xu B J, Ma X F and Guo H 2008 Opt. Lett. 33 2077
[26] Xu F 2015 Phys. Rev. A 92 012333
[27] Qiao Y C, Wang G, Li Z Y, Xu B J and Guo H 2019 Phys. Rev. A 99 052302
[28] Qiao Y C, Chen Z Y, Zhang Y C, Xu B J and Guo H 2020 Entropy 22 36
[29] Wang G, Li Z, Q iao Y, Chen Z, Peng X and Guo H 2018 IEEE J. Quantum Electron. 54 9300110
[30] Zeng P, Wu W J and Ma X F 2020 Phys. Rev. Appl. 13 064013
[31] Yu Y, Wang L, Zhao S M and Mao Q P 2021 Opt. Express 29 2227
[32] Zhang X X, Wang Y, Jiang M S, Zhou C, Lu Y F and Bao W S 2021 JOSA B 38 724
[33] Lu F Y, Yin Z Q, Wang R, Yuan-Fan G J, Wang S, He D Y, Chen W, Huang W, Xu B J, Guo G C and Han Z F 2019 New J. Phys. 21 123030
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[5] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[6] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[7] Quantum routing of few photons using a nonlinear cavity coupled to two chiral waveguides
Jian-Shuang Liu(刘建双), Ya Yang(杨亚), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2022, 31(11): 110301.
[8] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[9] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[10] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[11] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[12] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[13] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[14] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[15] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
No Suggested Reading articles found!