Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 078201    DOI: 10.1088/1674-1056/ac6012
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model

Yue Chen(陈约)1,2, Fuliang Guo(郭福亮)1,2, Lufeng Yang(杨陆峰)1, Jiaze Lu(卢嘉泽)1, Danna Liu(刘丹娜)3, Huayu Wang(王华宇)4,5, Jieyun Zheng(郑杰允)1, Xiqian Yu(禹习谦)1, and Hong Li(李泓)1,2,3,5,†
1 Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing WeLion New Energy Technology Co., Ltd., Beijing 100176, China;
4 Li Auto Inc., Beijing 101399, China;
5 Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, China
Abstract  Silicon-graphite (Si-Gr) composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries (LIBs) owing to their relatively high capacity and mild volume change. However, it is difficult to understand electrochemical interactions of Si and Gr in Si-Gr composite anodes and internal polarization of LIBs with regular experiment methods. Herein, we establish an electrochemical-mechanical coupled model to study the effect of rate and Si content on the electrochemical and stress behavior in a Si-Gr composite anode. The results show that the composites of Si and Gr not only improve the lithiation kinetics of Gr but also alleviate the voltage hysteresis of Si and decrease the risk of lithium plating in the negative electrode. What's more, the Si content is a tradeoff between electrode capacity and electrode volume variation. Further, various internal polarization contributions of cells using Si-Gr composite anodes are quantified by the voltage decomposition method. The results indicate that the electrochemical polarization of electrode materials and the electrolyte ohmic over-potential are dominant factors in the rate performance of cells, which provides theoretical guidance for improving the rate performance of LIBs using Si-Gr composite anodes.
Keywords:  Si-Gr      electrochemical interactions      polarization      rate performance  
Received:  10 January 2022      Revised:  14 February 2022      Accepted manuscript online:  23 March 2022
PACS:  82.47.Aa (Lithium-ion batteries)  
  65.40.gk (Electrochemical properties)  
  82.45.Fk (Electrodes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFE0100200), the National Natural Science Foundation of China (Grant No. U1964205), and the Beijing Municipal Science and Technology Commission (Grant No. Z191100004719001).
Corresponding Authors:  Hong Li     E-mail:  hli@iphy.ac.cn

Cite this article: 

Yue Chen(陈约), Fuliang Guo(郭福亮), Lufeng Yang(杨陆峰), Jiaze Lu(卢嘉泽), Danna Liu(刘丹娜), Huayu Wang(王华宇), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), and Hong Li(李泓) Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model 2022 Chin. Phys. B 31 078201

[1] Duffner F, Kronemeyer N, Tubke J, Leker J, Winter M and Schmuch R 2021 Nat. Energy 6 123
[2] Radin M D, Hy S, Sina M, Fang C C, Liu H D, Vinckeviciute J, Zhang M H, Whittingham M S, Meng Y S and Van der Ven A 2017 Adv. Energy Mater. 7 1602888
[3] Xia Y, Zheng J M, Wang C M and Gu M 2018 Nano Energy 49 434
[4] Zuo C J, Hu Z X, Qi R, Liu J J, Li Z B, Lu J L, Dong C, Yang K, Huang W Y, Chen C, Song Z B, Song S C, Yu Y M, Zheng J X and Pan F 2020 Adv. Energy Mater. 10 2000363
[5] Xu C Y, Li J L, Feng X Y, Zhao J W, Tang C J, Ji B M, Hu J, Cao C B, Zhu Y Q and Butt F K 2020 Electrochim. Acta 358 136901
[6] Wenjun L 2020 Energy Storage Sci. Technol. 9 448 (in Chinese)
[7] Yao K P C, Okasinski J S, Kalaga K, Almer J D and Abraham D P 2019 Adv. Energy Mater. 9 1803380
[8] Berhaut C L, Dominguez D Z, Kumar P, Jouneau P H, Porcher W, Aradilla D, Tardif S, Pouget S and Lyonnard S 2019 Acs Nano 13 11538
[9] Richter K, Waldmann T, Paul N, Jobst N, Scurtu R G, Hofmann M, Gilles R and Wohlfahrt-Mehrens M 2020 ChemSusChem 13 529
[10] Moon J, Lee H C, Jung H, Wakita S, Cho S, Yoon J, Lee J, Ueda A, Choi B, Lee S, Ito K, Kubo Y, Lim A C, Seo J G, Yoo J, Lee S, Ham Y, Baek W, Ryu Y G and Han I T 2021 Nat. Commun. 12 2714
[11] Heubner C, Liebmann T, Lohrberg O, Cangaz S, Maletti S and Michaelis A 2021 Batteries & Supercaps 5 e202100182
[12] Chandrasekaran R, Magasinski A, Yushin G and Fuller T F 2010 J. Electrochem. Soc. 157 A1139
[13] Chandrasekaran R and Fuller T F 2011 J. Electrochem. Soc. 158 A859
[14] Smith R B, Khoo E and Bazant M Z 2017 J. Phys. Chem. C 121 12505
[15] Chandesris M, Caliste D, Jamet D and Pochet P 2019 J. Phys. Chem. C 123 23711
[16] Liu B H, Jia Y K, Li J N, Jiang H Q, Yin S and Xu J 2020 J. Power Sources 450 227667
[17] Liu B H, Wang X, Chen H S, Chen S, Yang H X, Xu J, Jiang H Q and Fang D N 2019 J. Appl. Mech.-Trans. Asme 86 041005
[18] Pereira D J, Weidner J W and Garrick T R 2019 J. Electrochem. Soc. 166 A1251
[19] Lory P F, Mathieu B, Genies S, Reynier Y, Boulineau A, Hong W and Chandesris M 2020 J. Electrochem. Soc. 167 120506
[20] Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M and Shi S Q 2020 Chin. Phys. B 29 068202
[21] Doyle M and Newman J 1995 Electrochim. Acta 40 2191
[22] Christensen J and Newman J 2006 J. Electrochem. Soc. 153 A1019
[23] Christensen J and Newman J 2006 J. Solid State Electrochem. 10 293
[24] Nyman A, Zavalis T G, Elger R, Behm M and Lindbergh G 2010 J. Electrochem. Soc. 157 A1236
[25] Sturm J, Rheinfeld A, Zilberman I, Spingler F B, Kosch S, Frie F and Jossen A 2019 J. Power Sources 412 204
[26] Doyle M, Newman J, Gozdz A S, Schmutz C N and Tarascon J M 1996 J. Electrochem. Soc. 143 1890
[27] Li H G, Liu B H, Zhou D and Zhang C 2020 J. Electrochem. Soc. 167 120501
[28] Pan K, Zou F, Canova M, Zhu Y and Kim J H 2019 J. Power Sources 413 20
[29] Louli A J, Li J, Trussler S, Fell C R and Dahn J R 2017 J. Electrochem. Soc. 164 A2689
[30] Chevrier V L and Dahn J R 2009 J. Electrochem. Soc. 156 A454
[31] Sethuraman V A, Chon M J, Shimshak M, Srinivasan V and Guduru P R 2010 J. Power Sources 195 5062
[32] Baggetto L, Niessen R A H, Roozeboom F and Notten P H L 2008 Adv. Funct. Mater. 18 1057
[33] Vidal D, Leys C, Mathieu B, Guillet N, Vidal V, Borschneck D, Chaurand P, Genies S, De Vito E, Tulodziecki M and Porcher W 2021 J. Power Sources 514 230552
[34] Yu P, Popov B N, Ritter J A and White R E 1999 J. Electrochem. Soc. 146 8
[35] McDowell M T, Lee S W, Harris J T, Korgel B A, Wang C M, Nix W D and Cui Y 2013 Nano Lett. 13 758
[36] de Vasconcelos L S, Xu R and Zhao K J 2020 J. Mech. Phys. Solids 144 104102
[37] Mei W X, Jiang L H, Liang C, Sun J H and Wang Q S 2021 Energy Storage Mater. 41 209
[38] Kim J, Jeghan S M N and Lee G 2020 Microporous Mesoporous Mater. 305 110325
[39] Sattar T, Sim S J, Jin B S and Kim H S 2021 Sci. Rep. 11 18590
[40] Jung C H, Shim H, Eum D and Hong S H 2021 J. Korean Ceram. Soc. 58 1
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[4] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[5] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[9] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[10] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[11] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[12] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[13] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[14] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[15] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
No Suggested Reading articles found!