CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
First principles study of hafnium intercalation between graphene and Ir(111) substrate |
Hao Peng(彭浩)1, Xin Jin(金鑫)1, Yang Song(宋洋)1, and Shixuan Du(杜世萱)1,2,3,4,† |
1. Institute of Physics, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2. CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 3. Beijing National Center for Condensed Matter Physics, Beijing 100190, China; 4. Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract The intercalation of heteroatoms between graphene and metal substrates is a promising method for integrating epitaxial graphene with functional materials. Various elements and their oxides have been successfully intercalated into graphene/metal interfaces to form graphene-based heterostructures, showing potential applications in electronic devices. Here we theoretically investigate the hafnium intercalation between graphene and Ir(111). It is found that the penetration barrier of Hf atom is significantly large due to its large atomic radius, which suggests that hafnium intercalation should be carried out with low deposition doses of Hf atoms and high annealing temperatures. Our results show the different intercalation behaviors of a large-size atom and provide guidance for the integration of graphene and hafnium oxide in device applications.
|
Received: 25 February 2022
Revised: 07 April 2022
Accepted manuscript online:
|
PACS:
|
68.43.Bc
|
(Ab initio calculations of adsorbate structure and reactions)
|
|
81.05.ue
|
(Graphene)
|
|
68.35.Fx
|
(Diffusion; interface formation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61888102), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Shixuan Du
E-mail: sxdu@iphy.ac.cn
|
Cite this article:
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱) First principles study of hafnium intercalation between graphene and Ir(111) substrate 2022 Chin. Phys. B 31 106801
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [4] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777 [5] N'Diaye A T, Coraux J, Plasa T N, Busse C and Michely T 2008 New J. Phys. 10 16 [6] Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512 [7] Gao M, Pan Y, Zhang C D, Hu H, Yang R, Lu H L, Cai J M, Du S X, Liu F and Gao H J 2010 Appl. Phys. Lett. 96 053109 [8] Gao M, Pan Y, Huang L, Hu H, Zhang L Z, Guo H M, Du S X and Gao H J 2011 Appl. Phys. Lett. 98 033101 [9] Meng L, Wu R T, Zhang L Z, Li L F, Du S X, Wang Y L and Gao H J 2012 J. Phys.: Condens. Matter 24 314214 [10] Kang J, Shin D, Bae S and Hong B H 2012 Nanoscale 4 5527 [11] Chen Y, Gong X L and Gai J G 2016 Adv. Sci. 3 1500343 [12] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359 [13] Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X and Gao H J 2011 Appl. Phys. Lett. 99 163107 [14] Fei X M, Zhang L Z, Xiao W D, Chen H, Que Y D, Liu L W, Yang K, Du S X and Gao H J 2015 J. Phys. Chem. C 119 9839 [15] Petrovic M, Rakic I S, Runte S, Busse C, Sadowski J T, Lazic P, Pletikosic I, Pan Z H, Milun M, Pervan P, Atodiresei N, Brako R, Sokcevic D, Valla T, Michely T and Kralj M 2013 Nat. Commun. 4 2772 [16] Granas E, Andersen M, Arman M A, Gerber T, Hammer B, Schnadt J, Andersen J N, Michely T and Knudsen J 2013 J. Phys. Chem. C 117 16438 [17] Zhang H, Fu Q, Cui Y, Tan D L and Bao X H 2009 J. Phys. Chem. C 113 8296 [18] Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Castro Neto A H and Gao H J 2012 Appl. Phys. Lett. 100 093101 [19] Meng L, Wu R T, Zhou H T, Li G, Zhang Y, Li L F, Wang Y L and Gao H J 2012 Appl. Phys. Lett. 100 083101 [20] Que Y D, Zhang Y, Wang Y L, Huang L, Xu W Y, Tao J, Wu L J, Zhu Y M, Kim K, Weinl M, Schreck M, Shen C M, Du S X, Liu Y Q and Gao H J 2015 Adv. Mater. Interfaces 2 1400543 [21] Li G, Zhang L Z, Xu W Y, Pan J B, Song S R, Zhang Y, Zhou H T, Wang Y L, Bao L H, Zhang Y Y, Du S X, Ouyang M, Pantelides S T and Gao H J 2018 Adv. Mater. 30 1804650 [22] Guo H, Wang X Y, Huang L, Jin X, Yang Z Z, Zhou Z, Hu H, Zhang Y Y, Lu H L, Zhang Q H, Shen C M, Lin X, Gu L, Dai Q, Bao L H, Du S X, Hofer W, Pantelides S T and Gao H J 2020 Nano Lett. 20 8584 [23] Lizzit S, Larciprete R, Lacovig P, Dalmiglio M, Orlando F, Baraldi A, Gammelgaard L, Barreto L, Bianchi M, Perkins E and Hofmann P 2012 Nano Lett. 12 4503 [24] Wang X Y, Guo H, Lu J C, Lu H L, Lin X, Shen C M, Bao L H, Du S X and Gao H J 2021 Chin. Phys. B 30 048102 [25] Wang X Y, Guo H, Shi J A, Biao Y, Li Y, Han G Y, Zhang S, Qian K, Zhou W, Lin X, Du S X, Shen C M, Lu H L and Gao H J 2022 Rare Metals 41 304 [26] Robertson J 2006 Rep. Prog. Phys. 69 327 [27] Li L F, Wang Y L, Meng L, Wu R T and Gao H J 2013 Appl. Phys. Lett. 102 093106 [28] Granas E, Knudsen J, Schroder U A, Gerber T, Busse C, Arman M A, Schulte K, Andersen J N and Michely T 2012 ACS Nano 6 9951 [29] Schroder U A, Granas E, Gerber T, Arman M A, Martinez-Galera A J, Schulte K, Andersen J N, Knudsen J and Michely T 2016 Carbon 96 320 [30] Li G, Zhou H T, Pan L D, Zhang Y, Huang L, Xu W Y, Du S X, Ouyang M, Ferrari A C and Gao H J 2015 J. Am. Chem. Soc. 137 7099 [31] Cui Y, Gao J F, Jin L, Zhao J J, Tan D L, Fu Q and Bao X H 2012 Nano Res. 5 352 [32] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 [33] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [34] Blochl P E 1994 Phys. Rev. B 50 17953 [35] Feibelman P J 2008 Phys. Rev. B 77 165419 [36] Feibelman P J 2009 Phys. Rev. B 80 085412 [37] Zhang L Z, Du S X, Sun J T, Huang L, Meng L, Xu W Y, Pan L D, Pan Y, Wang Y L, Hofer W A and Gao H J 2014 Adv. Mater. Interfaces 1 1300104 [38] Grimme S 2006 J. Comput. Chem. 27 1787 [39] Henkelman G and Jonsson H 2000 J. Chem. Phys. 113 9978 [40] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|