|
|
Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2 |
Zhen Wang(王振)1,2, Hengcan Zhao(赵恒灿)1, Meng Lyu(吕孟)1, Junsen Xiang(项俊森)1, Qingxin Dong(董庆新)1,2, Genfu Chen(陈根富)1,2,3, Shuai Zhang(张帅)1,2,3, and Peijie Sun(孙培杰)1,2,3,† |
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China; 3. Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract By studying the thermal conductivity, specific heat, elastic modulus, and thermal expansion as a function of temperature for Cd3As2, we have unveiled a couple of important thermodynamic features of the low-energy phonons strongly interacting with Dirac electrons. The existence of soft optical phonons, as inferred from the extremely low thermal conductivity, is unambiguously confirmed by low-temperature specific heat revealing significant deviation from Debye's description. The estimated Debye temperature is small in the range of 100—200 K and varies significantly depending upon the measurement used in its experimental determination. The thermodynamic Grüneisen ratio γ reveals a remarkable reduction below about 100 K, an energy scale that is highly relevant to the Dirac states, towards negative values below about 10 K that are indicative of lattice instability.
|
Received: 11 May 2022
Revised: 10 June 2022
Accepted manuscript online:
|
PACS:
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
65.40.De
|
(Thermal expansion; thermomechanical effects)
|
|
63.20.kd
|
(Phonon-electron interactions)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974389, 12141002 and 52088101), the National Key R&D Program of China (Grant No. 2017YFA0303100), the Chinese Academy of Sciences through the Scientific Instrument Developing Project (Grant No. ZDKYYQ20210003), and the Strategic Priority Research Program (Grant No. XDB33000000). |
Corresponding Authors:
Peijie Sun
E-mail: pjsun@iphy.ac.cn
|
Cite this article:
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰) Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2 2022 Chin. Phys. B 31 106501
|
[1] Song Z D, Zhao J M, Fang Z and Dai X 2016 Phys. Rev. B 94 214306 [2] Nguyen T, Han F, Andrejevic N, Pablo-Pedro R, Apte A, Tsurimaki Y, Ding Z W, Zhang K Y, Alatas A, Alp E E, Chi S X, Fernandez-Baca J, Matsuda M, Tennant D A, Zhao Y, Xu Z J, Lynn J W, Huang S X and Li M D 2020 Phys. Rev. Lett. 124 236401 [3] Singh S, Wu Q S, Yue C M, Romero A H and Soluyanov A A 2018 Phys. Rev. Mater. 2 114204 [4] Wang Z J, Weng H M, Wu Q S, Dai X and Fang Z 2013 Phys. Rev. B 88 125427 [5] Xiang J S, Hu S L, Lyu M, Zhu W L, Ma C Y, Chen Z Y, Steglich F, Chen G F and Sun P J 2020 Sci. China-Phys. Mech. Astron. 63 237011 [6] Spitzer D P, Castellion G A and Haacke G 1966 J. Appl. Phys. 37 3795 [7] Zhang C, Zhou T, Liang S H, Cao J Z, Yuan X, Liu Y W, Shen Y, Wang Q S, Zhao J, Yang Z Q and Xiu F X 2016 Chin. Phys. B 25 017202 [8] Wang H H, Luo X G, Chen W W, Wang N Z, Lei B, Meng F B, Shang C, Ma L K, Wu T, Dai X, Wang Z F and Chen X H 2018 Sci. Bull. 63 411 [9] Toberer E S, Zevalkink A and Snyder G J 2011 J. Mater. Chem. 21 15843 [10] Yue S Y, Chorsi H T, Goyal M, Schumann T, Yang R Q, Xu T S, Deng B W, Stemmer S, Schuller J A and Liao B L 2019 Phys. Rev. Res. 1 033101 [11] Yue S Y, Deng B W, Liu Y M, Quan Y J, Yang R Q and Liao B L 2020 Phys. Rev. B 102 235428 [12] Sharafeev A, Gnezdilov V, Sankar R, Chou F C and Lemmens P 2017 Phys. Rev. B 95 235148 [13] Pietraszko A and Lukaszewicz K 1973 Phys. Status Solidi A 18 723 [14] Gamża M, Abrami P, Gammond L V D, Ayres J, Osmond I, Muramatsu T, Armstrong R, Perryman H, Daisenberger D, Das S and Friedemann S 2021 Phys. Rev. Mater. 5 024209 [15] Gupta S N, Muthu D V S, Shekhar C, Sankar R, Felser C and Sood A K 2017 Europhys. Lett. 120 57003 [16] Zhang S, Wu Q, Schoop L, Ali M N, Shi Y G, Ni N, Gibson Q, Jiang S, Sidorov V, Yi W, Guo J, Zhou Y Z, Wu D S, Gao P W, Gu D C, Zhang C, Jiang S, Yang K, Li A G, Li Y C, Li X D, Liu J, Dai X, Fang Z, Cava R J, Sun L L and Zhao Z X 2015 Phys. Rev. B 91 165133 [17] Küchler R, Bauer T, Brando M and Steglich F 2012 Rev. Sci. Instru. 83 095102 [18] Lüthi B 2005 Physical Acoustics in the Solid State (Berlin: Springer-Verlag) [19] Sharma G, Goswami P and Tewari S 2016 Phys. Rev. B 93 035116 [20] Zhou H, Cai Y, Zhang G and Zhang Y W 2016 Phys. Rev. B 94 045423 [21] Bartkowski K, Rafalowicz J and Zdanowicz W 1986 Int. J. Thermophys. 7 765 [22] Simoncelli M, Marzari N and Mauri F 2019 Nat. Phys. 15 809 [23] Tritt T 2004 Thermal conductivity: theory, properties and applications (New York: Kluwer Academic) [24] Chen Z W, Zhang X Y and Pei Y Z 2018 Adv. Mater. 30 1705617 [25] Matsuhira K, Sekine C, Wakeshima M, Hinatsu Y, Namiki T, Takeda K, Shirotani I, Sugawara H, Kikuchi D and Sato H 2009 J. Phys. Soc. Jpn. 78 124601 [26] Bentien A, Johnsen S, Madsen G K H, Iversen B B and Steglich F 2007 EPL 80 17008 [27] Zhu J, Feng T L, Mills S, Wang P P, Wu X W, Zhang L Y, Pantelides S T, Du X and Wang X J 2018 ACS Appl. Mater. Interfaces 10 40740 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|