Abstract We study the Kondo screening of a spin-1/2 magnetic impurity coupled to a superconductor, which is fabricated by combination of an s-wave superconductor, a ferromagnet and a semiconductor with Rashba spin—orbit coupling (RSOC). The proximity induced superconducting states include the s-wave and p-wave pairing components with the aids of RSOC, and the ferromagnet induces a Zeeman field which removes the spin degeneracy of the quasiparticles in the triplet states. Thus, the Kondo screening of magnetic impurity involves the orbital degrees of freedom, and is also affected by the Zeeman field. Using the variational method, we calculate the binding energy and the spin—spin correlation between the magnetic impurity and the electrons in the coexisting s-wave and p-wave pairing states. We find that Kondo singlet forms more easily with stronger RSOC, but Zeeman field in general decreases the binding energy. The spin—spin correlation decays fast in the vicinity of the magnetic impurity. Due to the RSOC, the spatial spin—spin correlation becomes highly anisotropic, and the Zeeman field can induce extra asymmetry to the off-diagonal components of the spin—spin correlation. Our study can offer some insights into the studies of extrinsic topological superconductors fabricated from the hybrid structures containing chains of magnetic impurities.
(Strongly correlated electron systems; heavy fermions)
Fund: Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19A040003).
Corresponding Authors:
Jin-Hua Sun
E-mail: sunjinhua@nbu.edu.cn
Cite this article:
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华) Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states 2022 Chin. Phys. B 31 107101
[1] Kondo J 1964 Prog. Theor. Phys.32 37 [2] Anderson P W 1961 Phys. Rev.124 41 [3] Wilson K G 1975 Rev. Mod. Phys.47 773 [4] Yu L 1965 Acta Phys. Sin.21 75 (in Chinese) [5] Shiba H 1968 Prog. Theor. Phys.40 435 [6] Rusinov A I 1969 Sov. Phys. JETP29 1101 [7] Hudson E W, Lang K M, Madhavan V, Pan S H, Eisaki H, Uchida S and Davis J C 2001 Nature411 920 [8] Yazdani A, Howald C M, Lutz C P, KapitulniA k and Eigler D M 1999 Phys. Rev. Lett.83 176 [9] Hudson E W, Pan S H, Gupta A K, Ng K W and Davis J C 1999 Science285 88 [10] Pan S H, Hudson E W, Lang K M, Eisaki H, Uchida S and Davis J C 2000 Nature403 746 [11] Tsai W F, Zhang Y Y, Fang C and Hu J P 2009 Phys. Rev. B80 064513 [12] Bang Y K, Choi H Y and Won H 2009 Phys. Rev. B79 054529 [13] Akbari A, Eremin I and Thalmeier P 2010 Phys. Rev. B81 014524 [14] Zha G Q and Jin Y Y 2017 Europhys. Lett.120 27002 [15] Guo Y Wu, Li W and Chen Y 2017 Front. Phys.12 1 [16] Sau J D and Demler E 2013 Phys. Rev. B88 205402 [17] Fu Z G, Zhang P, Wang Z G and Li S S 2012 J. Phys.: Condens. Matter24 145502 [18] Chen L, Zhang Y L and Han R S 2019 J. Phys.: Condens. Matter31 505603 [19] Chen R, Zhou B and Xu D H 2018 Phys. Rev. B97 155152 [20] Ishii H 1978 J. Low Temp. Phys.32 457 [21] Barzykin V and Affleck I 1998 Phys. Rev. B57 432 [22] Borda L 2007 Phys. Rev. B75 041307 [23] Moca C P, Weymann I, Werner M A and Zaránd G 2021 Phys. Rev. Lett.127 186804 [24] Borzenets I V, Shim J, Chen J C H, Ludwig A, Wieck A D, Tarucha S, Sim H S and Yamamoto M 2020 Nature579 210 [25] Wang Rui, Su W, Zhu J X, Ting C S, Li H, Chen C F, Wang B and Wang X Q 2019 Phys. Rev. Lett.122 087001 [26] Li L, Sun J H, Su W, Wang Z H, Xu D H, Luo H G and Chen W Q 2021 Phys. Rev. B103 125144 [27] Varma C M and Yafet Y 1976 Phys. Rev. B13 2950 [28] Gunnarsson O and Schönhammer K 1983 Phys. Rev. Lett.50 604 [29] Aji V, Varma C M and Vekhter I 2008 Phys. Rev. B77 224426 [30] Feng X Y, Chen W Q, Gao J H, Wang Q H and Zhang F C 2010 Phys. Rev. B81 235411 [31] Sun J H, Xu D H, Zhang F C and Zhou Y 2015 Phys. Rev. B92 195124 [32] Sun J H, Wang L J, Hu X T, Li L and Xu D H 2018 Phys. Rev. B97 035130 [33] Wang L J, Hu X T, Li L, Xu D H, Sun J H and Chen W Q 2019 Phys. Rev. B99 235108 [34] Yang X R, Huang Z Z, Wang W S and Sun J H 2021 Chin. Phys. B30 067103 [35] Deng Y H, Lü H F, K S S, Guo Y and Zhang H W 2018 J. Phys.: Condens. Matter30 435602 [36] Hone D 1967 Solid State Commun.5 705 [37] Simonin J and Allub R 1995 Phys. Rev. Lett.74 466 [38] Simon M E and Varma C M 1999 Phys. Rev. B60 9744 [39] Rozhkov A V and Arovas D P 2000 Phys. Rev. B62 6687 [40] Gor'kov L P and Rashba E I 2001 Phys. Rev. Lett.87 037004 [41] Frigeri P A, Agterberg D F, Koga A and Sigrist M 2004 Phys. Rev. Lett.92 097001 [42] Frigeri P A, Agterberg D F, Koga A and Sigrist M 2004 Phys. Rev. Lett.93 099903 [43] Sau J D, Lutchyn R M, Tewari S and Sarma S D 2010 Phys. Rev. Lett.104 040502 [44] Lutchyn R M, Sau J D and Sarma S D 2010 Phys. Rev. Lett.105 077001 [45] Ojanen T and Kitagawa T 2012 Phys. Rev. B85 161202 [46] Wong A, Ulloa S E, Sandler N and Ingersent K 2016 Phys. Rev. B93 075148 [47] Allison G, Fujita T, Morimoto K, Teraoka S, Larsson M, Kiyama H, Oiwa A, Haffouz S, Austing D G, Ludwig D G, Wieck A D and Tarucha S 2014 Phys. Rev. B90 235310 [48] Ž itko R and Bonča J 2011 Phys. Rev. B84 193411 [49] Zarea M, Ulloa S E and Sandler N 2012 Phys. Rev. Lett.108 046601 [50] Isaev L, Agterberg D F and Vekhter I 2012 Phys. Rev. B85 081107 [51] Fujimoto S 2008 Phys. Rev. B77 220501 [52] Zhang C W, Tewari S, Lutchyn R M and Sarma S D 2008 Phys. Rev. Lett.101 160401 [53] Alicea J 2010 Phys. Rev. B81 125318 [54] Alicea J 2012 Rep. Prog. Phys.75 076501 [55] Malecki J 2007 J. Statist. Phys.129 741
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.