Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 116103    DOI: 10.1088/1674-1056/ac685f
Special Issue: SPECIAL TOPIC — Emerging photovoltaic materials and devices
SPECIAL TOPIC—Emerging photovoltaic materials and devices Prev   Next  

Defect physics of the quasi-two-dimensional photovoltaic semiconductor GeSe

Saichao Yan(闫赛超)1,2, Jinchen Wei(魏金宸)1, Shanshan Wang(王珊珊)1, Menglin Huang(黄梦麟)2, Yu-Ning Wu(吴宇宁)1,†, and Shiyou Chen(陈时友)1,2,‡
1 Key Laboratory of Polar Materials and Devices(MOE) and Department of Electronics, East China Normal University, Shanghai 200241, China;
2 State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
Abstract  GeSe has recently emerged as a photovoltaic absorber material due to its attractive optical and electrical properties as well as earth abundancy and low toxicity. However, the efficiency of GeSe thin-film solar cells (TFSCs) is still low compared to the Shockley-Queisser limit. Point defects are believed to play important roles in the electrical and optical properties of GeSe thin films. Here, we perform first-principles calculations to study the defect characteristics of GeSe. Our results demonstrate that no matter under the Ge-rich or Se-rich condition, the Fermi level is always located near the valence band edge, leading to the p-type conductivity of undoped samples. Under Se-rich condition, the Ge vacancy (VGe) has the lowest formation energy, with a (0/2-) charge-state transition level at 0.22 eV above the valence band edge. The high density (above 1017 cm-3) and shallow level of VGe imply that it is the p-type origin of GeSe. Under Se-rich growth condition, Sei has a low formation energy in the neutral state, but it does not introduce any defect level in the band gap, suggesting that it neither contributes to electrical conductivity nor induces non-radiative recombination. In addition, Gei introduces a deep charge-state transition level, making it a possible recombination center. Therefore, we propose that the Se-rich condition should be adopted to fabricate high-efficiency GeSe solar cells.
Keywords:  GeSe bulk      point defect      concentration      photovoltaic  
Received:  13 January 2022      Revised:  14 April 2022      Accepted manuscript online:  20 April 2022
PACS:  61.72.J- (Point defects and defect clusters)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.Nr (Semiconductor compounds)  
Fund: This work was supported by Shanghai Academic/Technology Research Leader (Grant No. 19XD1421300), the National Natural Science Foundation of China (Grant No. 12174060), Program for Professor of Special Appointment (Eastern Scholar TP2019019), the National Key Research and Development Program of China (Grant No. 2019YFE0118100), State Key Laboratory of ASIC & System (Grant No. 2021MS006) and Young Scientist Project of MOE Innovation Platform.
Corresponding Authors:  Yu-Ning Wu, Shiyou Chen     E-mail:  ynwu@phy.ecnu.edu.cn;chensy@fudan.edu.cn

Cite this article: 

Saichao Yan(闫赛超), Jinchen Wei(魏金宸), Shanshan Wang(王珊珊), Menglin Huang(黄梦麟), Yu-Ning Wu(吴宇宁), and Shiyou Chen(陈时友) Defect physics of the quasi-two-dimensional photovoltaic semiconductor GeSe 2022 Chin. Phys. B 31 116103

[1] Guo Q, Mahaprasad K, William N S, Robert W B, Eric A S, Rakesh A and Hugh W H 2008 Nano Lett. 8 2982
[2] Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D, Luo M, Cao Y, Cheng Y, Sargent E H and Tang J 2015 Nat. Photonics 9 409
[3] Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Lee J and Seo J 2018 Nat. Energy 3 682
[4] Wang T, Guo Y Q and Li S 2017 Chin. Phys. B 26 103101
[5] Yang J and Wei S H 2019 Chin. Phys. B 28 086106
[6] Liu X, Hong C, Ding Y, Liu X, Yao J and Dai S 2019 Chin. Phys. B 28 014703
[7] Lu M, Xu J and Huang J W 2016 Chin. Phys. B 25 098402
[8] Hirai Y, Kurokawa Y and Yamada A 2014 Jpn. J. Appl. Phys. 53 012301
[9] Green M A, Dunlop E D, Levi D H, Hohl E J, Yoshita M and Ho B A 2019 Prog. Photovolt. 27 565
[10] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 1301465
[11] Sinsermsuksakul P, Sun L, Lee S W, Park H H, Kim S B, Yang C and Gordon R G 2014 Adv. Energy Mater. 4 1400496
[12] Steinmann V, Jaramillo R, Hartman K, Chakraborty R, Brandt R E, Poindexter J R, Lee Y S, Sun L, Polizzotti A, Park H, Gordon H R G and Buonassisi T 2014 Adv. Mater. 26 7488
[13] Park H H, Heasley R, Sun L, Steinmann V, Jaramillo R, Hartman K, Chakraborty R, Sinsermsuksakul P, Chua D, Buonassisi T and Gordon R G 2015 Prog. Photovolt. 23 901
[14] Minnam V R, Lindwall G, Pejjai B, Gedi S, Kotte T R, Sugiyama M, Liu Z K and Park C 2018 Sol. Energy Mater. Sol. Cells 176 251
[15] Yun H S, Park B W, Choi Y C, Im J, Shin T J and Seok S I 2019 Adv. Energy Mater. 9 1901343
[16] Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J Y and Cheng J 2014 Adv. Energy Mater. 4 1301846
[17] Wang L, Li D B, Li K, Chen C, Deng H X, Gao L, Zhao Y, Jiang F, Li L, Huang F, He Y, Song H, Niu G and Tang J 2017 Nat. Energy 2 409
[18] Wen X, Chen C, Lu S, Li K, Kondrotas R, Zhao Y, Chen W, Gao L, Wang C, Zhang J, Niu G and Tang J 2018 Nat. Commun. 9 2179
[19] Li Z, Liang X, Li G, Liu H, Zhang H, Guo J, Chen J, Shen K, San X, Yu W, Schropp R E and Mai Y 2019 Nat. Commun. 10 125
[20] Zimmermann E, Pfadler T, Kalb J, Dorman J A, Sommer D, Hahn G, Weickert J and Schmidt L 2015 Adv. Sci. 2 1500059
[21] Kondrotas R, Chen C and Tang J 2018 Joule 2 857
[22] Hames Y and Eren S 2004 Sol. Energy 77 291
[23] Musselman K P, Marin A, Schmi L and Macmanus J L 2012 Adv. Funct. Mater. 22 2202
[24] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A and Van C G 2014 Rev. Mod. Phys. 86 253
[25] Huang M, Xu P, Han D, Tang J and Chen S 2019 ACS Appl. Mater. Interfaces 11 15564
[26] Xue D J, Yang B, Yuan Z K, Wang G, Liu X, Zhou Y, Hu L, Pan D, Chen S and Tang J 2015 Adv. Energy Mater. 5 1501203
[27] Kshirsagar A S and Khanna P K 2019 Mater. Chem. Front. 3 437
[28] Dimitri R J, Vaughn D, Michael A and Raymond E S 2010 J. Am. Chem. Soc. 132 15170
[29] Wiedeneie E A 1975 Z. Anorg. Allg. Chem 411 182
[30] Xue D J, Liu S C, Dai C M, Chen S, He C, Zhao L, Hu J S and Wan L J 2017 J Am. Chem. Soc. 139 958
[31] Liu S C, Yang Y, Li Z, Xue D J and Hu J S 2020 Mater. Chem. Front. 4 775
[32] Vaughn D, Sun D, Levin S M, Biacchi A J, Mayer T S and Schaak R E 2012 Chem. Mater. 24 3643
[33] Chen M, Zha R H, Yuan Z Y, Jing Q S, Huang Z Y, Yang X K, Yang S M, Zhao X H, Xu D L and Zou G D 2017 Chem. Eng. J. 313 791
[34] Shi G and Kioupakis E 2015 Nano Lett. 15 6926
[35] Mukherjee B, Cai Y, Tan H R, Feng Y P, Tok E S and Sow C H 2013 ACS Appl. Mater. Interfaces 5 9594
[36] Liu S C, Dai C M, Min Y, Hou Y, Proppe A H, Zhou Y, Chen C, Chen S, Tang J, Xue D J, Sargent E H and Hu J S 2021 Nat. Commun. 12 670
[37] Hou G J, Wang D L, Ali R, Zhou Y R, Zhu Z G and Su G 2018 Sol. Energy 159 142
[38] Lv X, Wei W, Mu C, Huang B and Dai Y 2018 J. Mater. Chem. A 6 5032
[39] Hossain J, Mondal B K and Mostaque S K 2021 Semicond. Sci. Technol. 37 015008
[40] Zi W, Mu F, Lu X, Cao Y, Xie Y, Fang L, Cheng N, Zhao Z and Xiao Z 2020 Sol. Energy 199 837
[41] Shi L, Li Y and Dai Y 2015 Chempluschem 80 630
[42] Cheng K, Guo Y, Han N, Su Y, Zhang J and Zhao J 2017 J. Mater. Chem. C 5 3788
[43] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[44] Kresse J F 1996 Phys. Rev. B 54 11169
[45] Kresse J F 1996 Comp. Mater. Sci. 6 15
[46] Blochl P E 1994 Phys. Rev. B 50 17953
[47] John K B, Perdew P and Matthias E 1996 Phys. Rev. Lett. 77 3865
[48] Heyd J and Scuseria G E 2004 J. Chem. Phys. 120 7274
[49] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[50] Grimme S 2004 J. Comput. Chem. 25 1463
[51] Ektarawong A and Alling B 2018 J. Phys: Condens. Matter. 30 29LT01
[52] Phillips L J, Savory C N, Hutter O S, Yates P J, Shiel H, Mariotti S, Bowen L, Birkett M, Durose K, Scanlon D O and Major J D 2019 IEEE J. Photovolt. 9 544
[53] Christopher N, Savory and Scanlon D O 2019 J. Mater. Chem. A 7 10739
[54] Huang M L, Zheng Z N, Dai Z X, Guo X J, Wang S S, Jiang L L, Wei J C and Chen S 2022 arXiv: 2201.02079 [cond-mat.mtrl-sci]
[55] Zhang S, Li M L, Jiang M, Xiao H, Scanlon D O and Zu X T 2021 J. Phys. B: At. Mol. Opt. Phys. 54 035003
[56] Ma J, Wei S H, Gessert T A and Chin K K 2011 Phys. Rev. B 83 245207
[57] Yang J H, Park J S, Kang J, Metzger W, Barnes T and Wei S H 2014 Phys. Rev. B 90 245202
[58] Huang M, Wang S S, Wu Y N and Chen S 2021 Phys. Rev. Appl. 15 024035
[59] Zang Z 2018 Appl. Phys. Lett. 112 042106
[60] Birkett M, Linhart W M, Stoner J, Phillips L J, Durose K, Alaria J, Major J D, Kudrawiec R and Veal T D 2018 APL Mater. 6 084901
[61] Chen B, Chen G, Wang W, Cai H, Yao L, Chen S and Huang Z 2018 Sol. Energy 176 98
[62] Chen B, Ruan Y, Li J, Wang W, Liu X, Cai H, Yao L, Zhang J M, Chen S and Chen G 2019 Nanoscale 11 3968
[63] Zi W, Mu F, Lu X, Cao Y, Xie Y, Fang L, Cheng N, Zhao Z and Xiao Z 2020 Sol. Energy 199 837
[64] Yang W, Zhang X and Tilley S D 2021 Chem. Mater. 33 3467
[65] Liu S C, Li Z, Wu J, Zhang X, Feng M, Xue D J and Hu J S 2021 Sci. Chin. Mater. 64 2118
[66] Okazak A 1958 J. Phys. Soc. Jpn. 13 1151
[67] Dimitri D V and Romesh J P 2010 J. Am. Chem. Soc. 132 15170
[68] Shi L, Li Y and Dai Y 2015 Chempluschem 80 630
[69] Shaabani L, Aminorroaya S, Byrnes J, Akbar A N and Blake G R 2017 ACS Omega 2 9192
[70] Ding G, Gao G and Yao K 2015 Sci. Rep. 5 9567
[71] Gomes L C, Carvalho A and Castro N A 2015 Phys. Rev. B 92 214103
[72] Khan A A, Khan I, Ahmad I and Ali Z 2016 Mater. Sci. in Semicond. Process. 48 85
[73] Murgatroyd P A, Smiles M J, Savory C N, Shalvey T P, Swallow J E, Fleck N, Robertson, Jackel C M, Alaria J, Major J D, Scanlon D O and Veal T D 2020 Chem. Mater. 32 3245
[74] Kim Y and Choi I H 2018 J Korean Phys. Soc. 72 238
[75] Solanki G K, Deshpande M P, Agarwal M K, Patel P D and Vaidya S N 2003 J. Mater. Sci. Lett. 22 985
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[4] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[5] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[6] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[7] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[8] GeSn (0.524 eV) single-junction thermophotovoltaic cells based on the device transport model
Xin-Miao Zhu(朱鑫淼), Min Cui(崔敏), Yu Wang(汪宇), Tian-Jing Yu(于添景),Jin-Xiang Deng(邓金祥), and Hong-Li Gao(高红丽). Chin. Phys. B, 2022, 31(5): 058801.
[9] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[10] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[11] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[12] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[13] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[14] Fabrication of GaAs/SiO2/Si and GaAs/Si heterointerfaces by surface-activated chemical bonding at room temperature
Rui Huang(黄瑞), Tian Lan(兰天), Chong Li(李冲), Jing Li(李景), and Zhiyong Wang(王智勇). Chin. Phys. B, 2021, 30(7): 076802.
[15] Evolution of ion-irradiated point defect concentration by cluster dynamics simulation
Shuaishuai Feng(冯帅帅), Shasha Lv(吕沙沙), Liang Chen(陈良), and Zhengcao Li(李正操). Chin. Phys. B, 2021, 30(5): 056105.
No Suggested Reading articles found!