Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 098503    DOI: 10.1088/1674-1056/abea8e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application

Mohammad Javad Rabienejhad1, Mahdi Davoudi-Darareh2, and Azardokht Mazaheri3,†
1 Optics and Laser Science and Technology Research Center, Malek Ashtar University of Technology, Shahinshahr, Iran;
2 Faculty of Science, Department of Physics, Malek Ashtar University of Technology, Shahinshahr, Iran;
3 Department of Physics, University of Isfahan, Iran
Abstract  A novel hybrid structure with high responsivity and efficiency is proposed based on an L-shaped frame nano-antenna (LSFNA) array for solar energy harvesting application. So, two types of LSFNAs are designed and optimized to enhance the harvesting characteristics of traditional simple electric dipole nano-antenna (SEDNA). The LSFNA geometrical dimensions are optimized to have the best values for the required input impedance at three resonance wavelengths of λres = 10 μm, 15 μm, and 20 μm. Then the LSFNAs with three different sizes are modeled like a planar spiral-shaped array (PSSA). Also, a fractal bowtie nano-antenna is connected with the PSSA in the array gap. This proposed hybrid structure consists of two main elements: (I) Three different sizes of the LSFNAs with two different material types are designed based on the thin-film metal-insulator-metal diodes that are a proper method for infrared energy harvesting. (Ⅱ) The PSSA gap is designed based on the electron field emission proposed by the Fowler-Nordheim theory for the array rectification. Finally, the proposed device is analyzed. The results show that the PSSA not only has an averaged 3-time enhancement in the harvesting characteristics (such as return loss, harvesting efficiency, etc.) than the previously proposed structures but also is a multi-resonance wide-band device. Furthermore, the proposed antenna takes up less space in the electronic circuit and has an easy implementation process.
Keywords:  field electron emission      infrared      metal-insulator-metal (MIM) diode      nano-antenna      photovoltaic effects      rectification      solar energy harvesting  
Received:  18 December 2020      Revised:  22 January 2021      Accepted manuscript online:  01 March 2021
PACS:  85.45.Db (Field emitters and arrays, cold electron emitters)  
  84.40.Ba (Antennas: theory, components and accessories)  
  73.40.Ei (Rectification)  
  78.56.-a (Photoconduction and photovoltaic effects)  
Corresponding Authors:  Azardokht Mazaheri     E-mail:  dokht2001@yahoo.com

Cite this article: 

Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application 2021 Chin. Phys. B 30 098503

[1] Sugumaran S, Jamlos M F, Ahmad M N, Bellan C S, Sivaraj M and Krishnan P 2018 Biosensors and Bioelectronics 100 361
[2] Mescia L and Massaro A 2014 Adv. Mater. Sci. Eng. 2014 252879
[3] Livreri P, Caruso M, Castiglia V, Pellitteri F and Schettino G 2018 Int. J. Renew. Energy Res. 8 336
[4] Acciari G, Adamo G, Ala G, Busacca A, Caruso M, Giglia G, Imburgia A, Livreri P, Miceli R and Parisi A 2019 Photonics 6 86
[5] Heikkinen J and Kivikoski M 2003 IEEE Antennas Wirel. Propag. Lett. 2 330
[6] Park J Y and Han S M 2004 IEEE Antennas Wirel. Propag. Lett. 3 52
[7] Liu Z K, Xie Y N, Geng L, Pan D K and Song P 2016 Chin. Phys. Lett. 33 27802
[8] Alda J, Rico-García J M, López-Alonso J M and Boreman G 2005 Nanotechnology 16 S230
[9] Krenz P, Alda J and Boreman G 2008 Infrared Phys. Technol. 51 340
[10] Krasnok A E, Maksymov I S, Denisyuk A I, Belov P A, Miroshnichenko A E, Simovski C R and Kivshar Y S 2013 Phys. Usp. 56 539
[11] Ma Z and Vandenbosch G A E 2013 Sol. Energy 88 163
[12] Vandenbosch G A E and Ma Z 2012 Nano Energy 1 494
[13] Gadalla M N, Abdel-Rahman M and Shamim A 2014 Sci. Rep. 4 1
[14] Fischer H and Martin O J F 2008 Opt. Express 16 9144
[15] Amin Y, Chen Q, Zheng L R and Tenhunen H 2012 Prog. Electromagn. Res. 130 241
[16] Briones E, Alda J and González F J 2013 Opt. Express 21 A412
[17] Hussein M, Areed N F F, Hameed M F O and Obayya S S A 2014 Iet Optoelectron. 8 167
[18] Sadashivappa G and Sharvari N P 2015 Int. J. Renew. Energy Technol. Res. 4 1
[19] Moddel G 2013 Rectenna Solar Cells (Springer) pp. 3-24
[20] Fumeaux C, Herrmann W, Kneubühl F K and Rothuizen H 1998 Infrared Phys. Technol. 39 123
[21] Hashem I E, Rafat N H and Soliman E A 2012 IEEE J. Quantum Electron. 49 72
[22] Hoofring A B, Kapoor V J and Krawczonek W 1989 J. Appl. Phys. 66 430
[23] Krishnan S, La Rosa H, Stefanakos E, Bhansali S and Buckle K 2008 Sensors Actuators A Phys. 142 40
[24] Wang K, Hu H, Lu S, Guo L and He T 2015 Front. Phys. 10 104101
[25] Esaki L 1958 Phys. Rev. 109 603
[26] Hemour S and Wu K 2014 Proc. IEEE 102 1667
[27] Yesilkoy F 2012 IR detection and energy harvesting using antenna coupled MIM tunnel diodes (Dissertation)
[28] Grover S and Moddel G 2011 IEEE J. Photovoltaics 1 78
[29] Choi K, Yesilkoy F, Ryu G, Cho S H, Goldsman N, Dagenais M and Peckerar M 2011 IEEE Trans. Electron Devices 58 3519
[30] Singh J 2008 Quantum Mechanics: Fundamentals and applications to technology (John Wiley & Sons)
[31] Stratton R 1962 J. Phys. Chem. Solids 23 1177
[32] Jayaswal G, Belkadi A, Meredov A, Pelz B, Moddel G and Shamim A 2018 Mater. Today Energy 7 1
[33] Grover S, Dmitriyeva O, Estes M J and Moddel G 2010 IEEE Trans. Nanotechnol. 9 716
[34] Rabienejhad M, Mazaheri A and Davoudi-Darareh M 2020 Chin. Phys. B 30 048401
[35] Kennedy J and Eberhart R 1995 Proceedings of ICNN'95-International Conference on Neural Networks 4 1942
[36] Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257
[37] Bharadwaj P, Deutsch B and Novotny L 2009 Adv. Opt. Photon. 1 438
[38] Briones E, Ruiz-Cruz R, Briones J, Gonzalez N, Simon J, Arreola M and Alvarez-Alvarez G 2018 Opt. Express 26 28484
[39] Sultan K S, Abdullah H H and Abdallah E A 2012 Prog. Electromagn. Res. 1353
[40] Chekini A, Neshat M and Sheikhaei S 2020 J. Mod. Opt. 67 179
[41] Gallo M, Mescia L, Losito O, Bozzetti M and Prudenzano F 2012 Energy 39 27
[42] Singh R, Rockstuhl C, Menzel C, Meyrath T P, He M, Giessen H, Lederer F and Zhang W 2009 Opt. Express 17 9971
[43] Moddel G and Grover S 2013 Rectenna solar cells vol. 4 (Springer)
[44] Mushiake Y 1949 J. IEE Japan 69 87
[45] Chekini A, Sheikhaei S and Neshat M 2019 Microw. Opt. Technol. Lett. 61 412
[46] Höppener C, Lapin Z J, Bharadwaj P and Novotny L 2012 Phys. Rev. Lett. 109 17402
[47] Li J, Salandrino A and Engheta N 2006 Frontiers in Optics (Optical Society of America) p. FWC4
[48] Sederberg S and Elezzabi A Y 2011 Opt. Express 19 10456
[49] Sabaawi A M A, Tsimenidis C C and Sharif B S 2013 Rectenna Solar Cells (Springer) p. 231
[50] Gadalla M N 2013
[51] Di Garbo C, Livreri P and Vitale G 2016 International conference on modern electrical power engineering (ICMEPE-2016)
[52] Hashem I E, Rafat N H and Soliman E A 2014 IEEE Trans. Nanotechnol. 13 767
[53] Novotny L 2007 Phys. Rev. Lett. 98 266802
[54] Aizpurua J, Bryant G W, Richter L J, De Abajo F J G, Kelley B K and Mallouk T 2005 Phys. Rev. B 71 235420
[55] Cubukcu E and Capasso F 2009 Appl. Phys. Lett. 95 201101
[56] Dahmen C, Schmidt B and von Plessen G 2007 Nano Lett. 7 318
[57] Di Garbo C, Livreri P and Vitale G 2017 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (IEEE) pp. 1-6
[58] Grover S and Moddel G 2013 Rectenna Solar Cells (Springer) pp. 89-109
[59] Wang K, Hu H, Lu S, Guo L, Zhang T, Han Y, Zhou A and He T 2016 Opt. Mater. Express 6 3977
[60] Smith W F, Hashemi J and Presuel-Moreno F 2006 Foundations of materials science and engineering vol. 397 (McGraw-hill New York)
[61] Wiley B J, Qin D and Xia Y 2010 ACS Nano 4 3554
[62] Linden S, Kuhl J and Giessen H 2001 Phys. Rev. Lett. 86 4688
[63] Castillo R C 2013 Functional Nanostructures fabricated by focused electron/ion beam induced deposition (Springer Science & Business Media)
[64] Vesseur E J R, De Waele R, Lezec H J, Atwater H A, García de Abajo F J and Polman A 2008 Appl. Phys. Lett. 92 83110
[65] Henzie J, Lee J, Lee M H, Hasan W and Odom T W 2009 Annu. Rev. Phys. Chem. 60
[66] Xia Y and Whitesides G M 1998 Annu. Rev. Mater. Sci. 28 153
[67] Bender M, Plachetka U, Ran J, Fuchs A, Vratzov B, Kurz H, Glinsner T and Lindner F 2004 J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 22 3229
[68] Lee M H, Huntington M D, Zhou W, Yang J C and Odom T W 2011 Nano Lett. 11 311
[69] Odom T W, Thalladi V R, Love J C and Whitesides G M 2002 J. Am. Chem. Soc. 124 12112
[70] Henzie J, Barton J E, Stender C L and Odom T W 2006 Acc. Chem. Res. 39 249
[71] Kotter D K, Novack S D, Slafer W D and Pinhero P J 2010 J. Sol. Energy Eng. 132
[72] Bareiß M, Krenz P M, Szakmany G P, Tiwari B N, Kälblein D, Orlov A O, Bernstein G H, Scarpa G, Fabel B and Zschieschang U 2013 IEEE Trans. Nanotechnol. 12 1144
[73] Kafizas A and Parkin I P 2010 J. Mater. Chem. 20 2157
[74] Liu G, Chen J, Pan P and Liu Z 2018 IEEE J. Sel. Top. Quantum Electron. 25 1
[75] Wellenzohn M and Hainberger R 2012 Opt. Express 20 A20
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[3] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[4] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[9] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[12] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[13] Optical study on topological superconductor candidate Sr-doped Bi2Se3
Jialun Liu(刘佳伦), Chennan Wang(王晨南), Tong Lin(林桐), Liye Cao(曹立叶), Lei Wang(王蕾), Jiaji Li(李佳吉), Zhen Tao(陶镇), Nan Shen(申娜), Rina Wu(乌日娜), Aifang Fang(房爱芳), Nanlin Wang(王楠林), and Rongyan Chen(陈荣艳). Chin. Phys. B, 2022, 31(11): 117402.
[14] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[15] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
No Suggested Reading articles found!