INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application |
Mohammad Javad Rabienejhad1, Mahdi Davoudi-Darareh2, and Azardokht Mazaheri3,† |
1 Optics and Laser Science and Technology Research Center, Malek Ashtar University of Technology, Shahinshahr, Iran; 2 Faculty of Science, Department of Physics, Malek Ashtar University of Technology, Shahinshahr, Iran; 3 Department of Physics, University of Isfahan, Iran |
|
|
Abstract A novel hybrid structure with high responsivity and efficiency is proposed based on an L-shaped frame nano-antenna (LSFNA) array for solar energy harvesting application. So, two types of LSFNAs are designed and optimized to enhance the harvesting characteristics of traditional simple electric dipole nano-antenna (SEDNA). The LSFNA geometrical dimensions are optimized to have the best values for the required input impedance at three resonance wavelengths of λres = 10 μm, 15 μm, and 20 μm. Then the LSFNAs with three different sizes are modeled like a planar spiral-shaped array (PSSA). Also, a fractal bowtie nano-antenna is connected with the PSSA in the array gap. This proposed hybrid structure consists of two main elements: (I) Three different sizes of the LSFNAs with two different material types are designed based on the thin-film metal-insulator-metal diodes that are a proper method for infrared energy harvesting. (Ⅱ) The PSSA gap is designed based on the electron field emission proposed by the Fowler-Nordheim theory for the array rectification. Finally, the proposed device is analyzed. The results show that the PSSA not only has an averaged 3-time enhancement in the harvesting characteristics (such as return loss, harvesting efficiency, etc.) than the previously proposed structures but also is a multi-resonance wide-band device. Furthermore, the proposed antenna takes up less space in the electronic circuit and has an easy implementation process.
|
Received: 18 December 2020
Revised: 22 January 2021
Accepted manuscript online: 01 March 2021
|
PACS:
|
85.45.Db
|
(Field emitters and arrays, cold electron emitters)
|
|
84.40.Ba
|
(Antennas: theory, components and accessories)
|
|
73.40.Ei
|
(Rectification)
|
|
78.56.-a
|
(Photoconduction and photovoltaic effects)
|
|
Corresponding Authors:
Azardokht Mazaheri
E-mail: dokht2001@yahoo.com
|
Cite this article:
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application 2021 Chin. Phys. B 30 098503
|
[1] Sugumaran S, Jamlos M F, Ahmad M N, Bellan C S, Sivaraj M and Krishnan P 2018 Biosensors and Bioelectronics 100 361 [2] Mescia L and Massaro A 2014 Adv. Mater. Sci. Eng. 2014 252879 [3] Livreri P, Caruso M, Castiglia V, Pellitteri F and Schettino G 2018 Int. J. Renew. Energy Res. 8 336 [4] Acciari G, Adamo G, Ala G, Busacca A, Caruso M, Giglia G, Imburgia A, Livreri P, Miceli R and Parisi A 2019 Photonics 6 86 [5] Heikkinen J and Kivikoski M 2003 IEEE Antennas Wirel. Propag. Lett. 2 330 [6] Park J Y and Han S M 2004 IEEE Antennas Wirel. Propag. Lett. 3 52 [7] Liu Z K, Xie Y N, Geng L, Pan D K and Song P 2016 Chin. Phys. Lett. 33 27802 [8] Alda J, Rico-García J M, López-Alonso J M and Boreman G 2005 Nanotechnology 16 S230 [9] Krenz P, Alda J and Boreman G 2008 Infrared Phys. Technol. 51 340 [10] Krasnok A E, Maksymov I S, Denisyuk A I, Belov P A, Miroshnichenko A E, Simovski C R and Kivshar Y S 2013 Phys. Usp. 56 539 [11] Ma Z and Vandenbosch G A E 2013 Sol. Energy 88 163 [12] Vandenbosch G A E and Ma Z 2012 Nano Energy 1 494 [13] Gadalla M N, Abdel-Rahman M and Shamim A 2014 Sci. Rep. 4 1 [14] Fischer H and Martin O J F 2008 Opt. Express 16 9144 [15] Amin Y, Chen Q, Zheng L R and Tenhunen H 2012 Prog. Electromagn. Res. 130 241 [16] Briones E, Alda J and González F J 2013 Opt. Express 21 A412 [17] Hussein M, Areed N F F, Hameed M F O and Obayya S S A 2014 Iet Optoelectron. 8 167 [18] Sadashivappa G and Sharvari N P 2015 Int. J. Renew. Energy Technol. Res. 4 1 [19] Moddel G 2013 Rectenna Solar Cells (Springer) pp. 3-24 [20] Fumeaux C, Herrmann W, Kneubühl F K and Rothuizen H 1998 Infrared Phys. Technol. 39 123 [21] Hashem I E, Rafat N H and Soliman E A 2012 IEEE J. Quantum Electron. 49 72 [22] Hoofring A B, Kapoor V J and Krawczonek W 1989 J. Appl. Phys. 66 430 [23] Krishnan S, La Rosa H, Stefanakos E, Bhansali S and Buckle K 2008 Sensors Actuators A Phys. 142 40 [24] Wang K, Hu H, Lu S, Guo L and He T 2015 Front. Phys. 10 104101 [25] Esaki L 1958 Phys. Rev. 109 603 [26] Hemour S and Wu K 2014 Proc. IEEE 102 1667 [27] Yesilkoy F 2012 IR detection and energy harvesting using antenna coupled MIM tunnel diodes (Dissertation) [28] Grover S and Moddel G 2011 IEEE J. Photovoltaics 1 78 [29] Choi K, Yesilkoy F, Ryu G, Cho S H, Goldsman N, Dagenais M and Peckerar M 2011 IEEE Trans. Electron Devices 58 3519 [30] Singh J 2008 Quantum Mechanics: Fundamentals and applications to technology (John Wiley & Sons) [31] Stratton R 1962 J. Phys. Chem. Solids 23 1177 [32] Jayaswal G, Belkadi A, Meredov A, Pelz B, Moddel G and Shamim A 2018 Mater. Today Energy 7 1 [33] Grover S, Dmitriyeva O, Estes M J and Moddel G 2010 IEEE Trans. Nanotechnol. 9 716 [34] Rabienejhad M, Mazaheri A and Davoudi-Darareh M 2020 Chin. Phys. B 30 048401 [35] Kennedy J and Eberhart R 1995 Proceedings of ICNN'95-International Conference on Neural Networks 4 1942 [36] Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257 [37] Bharadwaj P, Deutsch B and Novotny L 2009 Adv. Opt. Photon. 1 438 [38] Briones E, Ruiz-Cruz R, Briones J, Gonzalez N, Simon J, Arreola M and Alvarez-Alvarez G 2018 Opt. Express 26 28484 [39] Sultan K S, Abdullah H H and Abdallah E A 2012 Prog. Electromagn. Res. 1353 [40] Chekini A, Neshat M and Sheikhaei S 2020 J. Mod. Opt. 67 179 [41] Gallo M, Mescia L, Losito O, Bozzetti M and Prudenzano F 2012 Energy 39 27 [42] Singh R, Rockstuhl C, Menzel C, Meyrath T P, He M, Giessen H, Lederer F and Zhang W 2009 Opt. Express 17 9971 [43] Moddel G and Grover S 2013 Rectenna solar cells vol. 4 (Springer) [44] Mushiake Y 1949 J. IEE Japan 69 87 [45] Chekini A, Sheikhaei S and Neshat M 2019 Microw. Opt. Technol. Lett. 61 412 [46] Höppener C, Lapin Z J, Bharadwaj P and Novotny L 2012 Phys. Rev. Lett. 109 17402 [47] Li J, Salandrino A and Engheta N 2006 Frontiers in Optics (Optical Society of America) p. FWC4 [48] Sederberg S and Elezzabi A Y 2011 Opt. Express 19 10456 [49] Sabaawi A M A, Tsimenidis C C and Sharif B S 2013 Rectenna Solar Cells (Springer) p. 231 [50] Gadalla M N 2013 [51] Di Garbo C, Livreri P and Vitale G 2016 International conference on modern electrical power engineering (ICMEPE-2016) [52] Hashem I E, Rafat N H and Soliman E A 2014 IEEE Trans. Nanotechnol. 13 767 [53] Novotny L 2007 Phys. Rev. Lett. 98 266802 [54] Aizpurua J, Bryant G W, Richter L J, De Abajo F J G, Kelley B K and Mallouk T 2005 Phys. Rev. B 71 235420 [55] Cubukcu E and Capasso F 2009 Appl. Phys. Lett. 95 201101 [56] Dahmen C, Schmidt B and von Plessen G 2007 Nano Lett. 7 318 [57] Di Garbo C, Livreri P and Vitale G 2017 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (IEEE) pp. 1-6 [58] Grover S and Moddel G 2013 Rectenna Solar Cells (Springer) pp. 89-109 [59] Wang K, Hu H, Lu S, Guo L, Zhang T, Han Y, Zhou A and He T 2016 Opt. Mater. Express 6 3977 [60] Smith W F, Hashemi J and Presuel-Moreno F 2006 Foundations of materials science and engineering vol. 397 (McGraw-hill New York) [61] Wiley B J, Qin D and Xia Y 2010 ACS Nano 4 3554 [62] Linden S, Kuhl J and Giessen H 2001 Phys. Rev. Lett. 86 4688 [63] Castillo R C 2013 Functional Nanostructures fabricated by focused electron/ion beam induced deposition (Springer Science & Business Media) [64] Vesseur E J R, De Waele R, Lezec H J, Atwater H A, García de Abajo F J and Polman A 2008 Appl. Phys. Lett. 92 83110 [65] Henzie J, Lee J, Lee M H, Hasan W and Odom T W 2009 Annu. Rev. Phys. Chem. 60 [66] Xia Y and Whitesides G M 1998 Annu. Rev. Mater. Sci. 28 153 [67] Bender M, Plachetka U, Ran J, Fuchs A, Vratzov B, Kurz H, Glinsner T and Lindner F 2004 J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 22 3229 [68] Lee M H, Huntington M D, Zhou W, Yang J C and Odom T W 2011 Nano Lett. 11 311 [69] Odom T W, Thalladi V R, Love J C and Whitesides G M 2002 J. Am. Chem. Soc. 124 12112 [70] Henzie J, Barton J E, Stender C L and Odom T W 2006 Acc. Chem. Res. 39 249 [71] Kotter D K, Novack S D, Slafer W D and Pinhero P J 2010 J. Sol. Energy Eng. 132 [72] Bareiß M, Krenz P M, Szakmany G P, Tiwari B N, Kälblein D, Orlov A O, Bernstein G H, Scarpa G, Fabel B and Zschieschang U 2013 IEEE Trans. Nanotechnol. 12 1144 [73] Kafizas A and Parkin I P 2010 J. Mater. Chem. 20 2157 [74] Liu G, Chen J, Pan P and Liu Z 2018 IEEE J. Sel. Top. Quantum Electron. 25 1 [75] Wellenzohn M and Hainberger R 2012 Opt. Express 20 A20 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|