Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 116104    DOI: 10.1088/1674-1056/ac9222
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Pressure-induced novel structure with graphene-like boron-layer in titanium monoboride

Yuan-Yuan Jin(金园园)1, Jin-Quan Zhang(张金权)1, Shan Ling(凌山)1, Yan-Qi Wang(王妍琪)1, Song Li(李松)1, Fang-Guang Kuang(匡芳光)2, Zhi-Yan Wu(武志燕)3,†, and Chuan-Zhao Zhang(张传钊)1,‡
1 Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China;
2 School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China;
3 College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China
Abstract  The recent discovery of the novel boron-framework in boron-rich metal borides with complex structures and intriguing features under high pressure has stimulated the search into the unique boron-network in the metal monoborides or boron-deficient metal borides at high pressure. Herein, based on the particle swarm optimization algorithm combined with first-principles calculations, we thoroughly explored the structural evolution and properties of TiB up to 200 GPa. This material undergoes a pressure-induced phase transition of $Pnma$ $\to $ $Cmcm$ $\to $ $Pmmm$. Besides of two known phases $Pnma$ and $Cmcm$, an unexpected orthorhombic $Pmmm$ structure was predicted to be energetically favored in the pressure range of 110.88-200 GPa. Intriguingly, the B covalent network eventually evolved from a one-dimensional zigzag chain in $Pnma$-TiB and $Cmcm$-TiB to a graphene-like B-sheet in $Pmmm$-TiB. On the basis of the microscopic hardness model, the calculated hardness ($H_{\rm v}$) values of $Pnma$ at 1 atm, $Cmcm$ at 100 GPa, and $Pmmm$ at 140 GPa are 36.81 GPa, 25.17 GPa, and 15.36 GPa, respectively. Remarkably, analyses of the density of states, electron localization function and the crystal orbital Hamilton population (COHP) exhibit that the bonding nature in the three TiB structures can be considered as a combination of the B-B and Ti-B covalent interactions. Moreover, the high hardness and excellent mechanical properties of the three TiB polymorphs can be ascribed to the strong B-B and Ti-B covalent bonds.
Keywords:  transition-metal boride      high pressure      first-principles      phase transition  
Received:  24 July 2022      Revised:  14 September 2022      Accepted manuscript online:  15 September 2022
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  61.66.Fn (Inorganic compounds)  
  63.20.dk (First-principles theory)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11804031), the Scientific Research Project of Education Department of Hubei Province, China (Grant No. Q20191301), Youth Science Foundation of Jiangxi Province, China (Grant No. 20171BAB211009), and Henan Province Key Research and Development and Promotion of Special Scientific and Technological Research Project (Grant No. 222102320283).
Corresponding Authors:  Zhi-Yan Wu, Chuan-Zhao Zhang     E-mail:  2018010@htu.edu.cn;zcz19870517@163.com

Cite this article: 

Yuan-Yuan Jin(金园园), Jin-Quan Zhang(张金权), Shan Ling(凌山), Yan-Qi Wang(王妍琪), Song Li(李松), Fang-Guang Kuang(匡芳光), Zhi-Yan Wu(武志燕), and Chuan-Zhao Zhang(张传钊) Pressure-induced novel structure with graphene-like boron-layer in titanium monoboride 2022 Chin. Phys. B 31 116104

[1] Albert B and Hillebrecht H 2009 Angew. Chem. Int. Ed. 48 8640
[2] Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H and Kaner R B 2007 Science 316 436
[3] Cumberland R W, Weinberger M B, Gilman J J, Clark, S M, Tolbert S H and Kaner R B 2005 J. Am. Chem. Soc. 127 7264
[4] Li Q, Zhou D, Zheng W, Ma Y and Chen C 2013 Phys. Rev. Lett. 110 136403
[5] An J M and Pickett W E 2001 Phys. Rev. Lett. 86 4366
[6] Kortus J, Mazin I I, Belashchenko K D, Antropov V P and Boyer L L 2001 Phys. Rev. Lett. 86 4656
[7] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63
[8] Li Y, Tan D, Wang Q, Xiao Z, Tian C and Chen L 2020 Chin. Phys. B 29 098103
[9] Liu T, Yang X G, Li Z, Hu Y W, Lv C F, Zhao W B, Zang J H and Shan C X 2020 Chin. Phys. B 29 108102
[10] Ma Y, Wang Y and Oganov A R 2009 Phys. Rev. B 79 54101
[11] Kotmool K, Kaewmaraya T, Chakraborty S, Anversa J, Bovornratanaraks T, Luo W, Gou H, Piquini P C, Kang T W, Mao H K and Ahuja R 2014 P. Natl. Acad. Sci. USA 111 17050
[12] Harran I, Chen Y, Wang H and Ni Y 2018 Cryst. Eng. Comm. 20 3928
[13] Kotmool K, Tsuppayakorn-aek P, Kaewmaraya T, Pinsook U, Ahuja R and Bovornratanaraks T 2020 J. Phys. Chem. C 124 14804
[14] Kotmool K, Bovornratanaraks T, Pinsook U and Ahuja R 2016 J. Phys. Chem. C 120 23165
[15] Wu L, Wan B, Liu H, Gou H, Yao Y, Li Z, Zhang J, Gao F and Mao H K 2016 J. Phys. Chem. Lett. 7 4898
[16] Duan L, Su J, Gong N, Wan B, Chen P, Zhou P, Wang Z, Li Z and Wu L 2019 Dalton Trans. 48 14299
[17] Kolmogorov A N, Shah S, Margine E R, Kleppe A K and Jephcoat A P 2012 Phys. Rev. Lett. 109 075501
[18] Zhu L, Borstad G M, Cohen R E and Strobel T A 2019 Phys. Rev. B 100 214102
[19] Li X, Huang X, Duan D, Wu G, Liu M, Zhuang Q, Wei S, Huang Y, Li F, Zhou Q, Liu B and Cui T 2016 RSC Adv. 6 18077
[20] Wang J, Song X, Shao X, Gao B, Li Q and Ma Y 2018 J. Phys. Chem. C 122 27820
[21] Du J, Li X and Peng F 2022 Phys. Chem. Chem. Phys. 24 10079
[22] Attar H, Ehtemam-Haghighi S, Soro N, Kent D and Dargusch M S 2020 J. Alloys Compd. 827 154263
[23] Bao Y, Huang L, An Q, Jiang S, Zhang R, Geng L and Ma X 2019 J. Mater. Process. Technol. 274 116298
[24] Luo S, Song T, Liu B, Tian J and Qian M 2019 Adv. Eng. Mater. 21 1801331
[25] Dercker B F and Kasper J S 1954 Acta Cryst. 7 77
[26] Murray J L, Liao P K and Spear K E 1986 Bull. Alloy Phase Diagrams 7 550
[27] Spear K E, Mcdowell P and Mcmahon F 1986 J. Am. Ceram. Soc. 69 C-4
[28] Li Q, Zhou D, Zheng W, Ma Y and Chen C 2015 Phys. Rev. Lett. 115 185502
[29] Lu J, Qin J, Chen Y, Zhang Z, Lu W and Zhang D 2010 J. Alloy. Compd. 490 118
[30] Atri R R, Ravichandran K S and Jha S K 1999 Mater. Sci. Eng. A 271 150
[31] Cao G, Geng L and Naka M 2006 J. Am. Ceram. Soc. 89 3836
[32] Hu J, Dong X and Tosto S 2012 J. Am. Ceram. Soc. 95 2089
[33] Li P, Zhou R and Zeng X C 2015 ACS Appl. Mater. Interfaces 7 15607
[34] Huang B, Duan Y, Hu W, Sun Y and Chen S 2015 Ceram. Int. 41 6831
[35] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[36] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[37] Zhang X, Wang Y, Lv J, Zhu C, Li Q, Zhang M, Li Q and Ma Y 2013 J. Chem. Phys. 138 114101
[38] Chen B, Conway L J, Sun W, Kuang X, Lu C and Hermann 2021 Phys. Rev. B 103 035131
[39] Wang W, Zhang C, Jin Y, Li S, Zhang W, Kong P, Xie C, Du C, Liu Q and Zhang C 2020 Sci. Rep.-UK 10 8868
[40] Chen B, Tian M, Zhang J, Li B, Xiao Y, Chow P, Kenney-Benson C, Deng H, Zhang J, Sereika R, Yin X, Wang D, Hong X, Jin C, Bi Y, Liu H, Liu H, Li J, Jin K, Wu Q, Chang J, Ding Y and Mao H 2022 Phys. Rev. Lett. 129 016401
[41] Zhang J, Jin Y, Zhang C, Wang Y, Tang L, Li S, Ju M, Wang J, Sun W and Dou X 2022 RSC Adv. 12 11722
[42] Sun W, Kuang X, Keen H D J, Lu C and Hermann A 2020 Phys. Rev. B 102 144524
[43] Guan P W, Sun Y, Hemley R J, Liu H, Ma Y and Viswanathan V 2022 Phys. Rev. Lett. 128 186001
[44] Li S, Wang H, Sun W, Lu C and Peng F 2022 Phys. Rev. B 105 224107
[45] Duan Q, Shen J, Zhong X, Lu H and Lu C 2022 Phys. Rev. B 105 214503
[46] Liu C and Ying P 2022 Chin. Phys. B 31 026201
[47] Chu B H, Zhao Y and Wang D H 2021 Chin. Phys. B 30 046101
[48] Dou X, Kuang X, Sun W, Jiang G, Lu C and Hermann A 2021 Phys. Rev. B 104 224510
[49] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[50] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[51] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[52] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[53] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[54] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[55] Dronskowski R and Bloechl P E 1993 J. Phys. Chem. 97 8617
[56] Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2016 J. Comput. Chem. 37 1030
[57] Hill R 1952 Proc. Phys. Soc. London, Sect. A 65 349
[58] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[59] Miao M, Sun Y, Zurek E and Lin H 2020 Nat. Rev. Chem. 4 508
[60] Panda K B and Chandran K S R 2006 Acta Mater. 54 1641
[61] Li D, Xu Y N and Ching W Y 1992 Phys. Rev. B 45 5895
[62] Oganov A R, Chen J, Gatti C, Ma Y, Ma Y, Glass C W, Liu Z, Yu T, Kurakevych O O and Solozhenko V L 2009 Nature 457 863
[63] Zhao K, Wang Q, Li W, Yang Q, Yu H, Han F, Liu H and Zhang S 2022 Phys. Rev. B 105 094104
[64] Kolmogorov A N and Curtarolo S 2006 Phys. Rev. B 73 180501
[65] Sun Y, Li X, Iitaka T, Liu H and Xie Y 2022 Phys. Rev. B 105 134501
[66] Zhang J, Shao S and Liu H 2022 Phys. Rev. B 106 054101
[67] Zhang P, Li X, Yang X, Wang H, Yao Y and Liu H 2022 Phys. Rev. B 105 094503
[68] Zhong X, Sun Y, Iitaka T, Xu M, Liu H, Hemley R J, Chen C and Ma Y 2022 J. Am. Chem. Soc. 144 13394
[69] Zhou H C, Huang S L, Li G X, Yu G F, Wang J and Bu H X 2019 Acta Phys. Sin. 68 217101 (in Chinese)
[70] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[71] Pugh S F 1954 Philos. Mag. 45 823
[72] Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S and Tian Y 2003 Phys. Rev. Lett. 91 15502
[73] Liu H, Fan Q Y, Yang F, Yu X H, Zhang W and Yun S N 2020 Chin. Phys. B 29 106102
[74] Chen G X, Fan X B, Li S Q and Zhang J M 2019 Acta Phys. Sin. 68 237303 (in Chinese)
[75] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[76] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[5] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[8] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[9] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[10] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[11] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[12] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[13] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[14] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[15] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
No Suggested Reading articles found!