CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Fabrication of GaAs/SiO2/Si and GaAs/Si heterointerfaces by surface-activated chemical bonding at room temperature |
Rui Huang(黄瑞)1, Tian Lan(兰天)1, Chong Li(李冲)2, Jing Li(李景)1, and Zhiyong Wang(王智勇)1,† |
1 Institute of Advanced Technology on Semiconductor Optics & Electronics, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China; 2 College of Microelectronics, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract The room-temperature (RT) bonding mechanisms of GaAs/SiO2/Si and GaAs/Si heterointerfaces fabricated by surface-activated bonding (SAB) are investigated using a focused ion beam (FIB) system, cross-sectional scanning transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDX) and scanning acoustic microscopy (SAM). According to the element distribution detected by TEM and EDX, it is found that an intermixing process occurs among different atoms at the heterointerface during the RT bonding process following the surface-activation treatment. The diffusion of atoms at the interface is enhanced by the point defects introduced by the process of surface activation. We can confirm that through the point defects, a strong heterointerface can be created at RT. The measured bonding energies of GaAs/SiO2/Si and GaAs/Si wafers are 0.7 J/m2 and 0.6 J/m2. The surface-activation process can not only remove surface oxides and generate dangling bonds, but also enhance the atomic diffusivity at the interface.
|
Received: 11 March 2021
Revised: 13 April 2021
Accepted manuscript online: 19 April 2021
|
PACS:
|
68.55.ag
|
(Semiconductors)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
81.16.Rf
|
(Micro- and nanoscale pattern formation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505003 and 61674140), the Beijing Education Commission Project (Grant No. SQKM201610005008), and Beijing Postdoctoral Research Foundation (Grant No. 2020-Z2-043). |
Corresponding Authors:
Zhiyong Wang
E-mail: zyw_bjut@126.com
|
Cite this article:
Rui Huang(黄瑞), Tian Lan(兰天), Chong Li(李冲), Jing Li(李景), and Zhiyong Wang(王智勇) Fabrication of GaAs/SiO2/Si and GaAs/Si heterointerfaces by surface-activated chemical bonding at room temperature 2021 Chin. Phys. B 30 076802
|
[1] Adachi S 1992 Physical properties of Ⅲ-V semiconductor compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (John Wiley & Sons, Inc) [2] Look D C 1989 Electrical Characterization of GaAs Materials and Devices (John Wiley & Sons, Inc) [3] Flederling R, Kelm M, Reuscher G, Ossau W, Schmidt G, Waag A and Molenkamp L W 1999 Nature 402 787 [4] Vilan A, Shanzer A and Cahen D 2000 Nature 404 166 [5] Tsintzos S I, Pelekanos N T, Konstantinidis G, Hatzopoulos Z and Savvidis P G 2008 Nature 453 372 [6] Yoon J, Jo S, Chun I S, Jung I, Kim H S, Meitl M, Menard E, Li X, Coleman J J, Paik U and Rogers J A 2010 Nature 465 329 [7] Yoo M J, Fulton T A, Hess H F, Willett R L, Dunkleberger L N, Chichester R J, Pfeiffer L N and West K W 1997 Science 276 579 [8] Jenkins P P, Macinnes A N, Tabib-azar M, Andrew R, Jenkins P P, Macinnes A N, Tabib-azar M and Barront A R 2016 Science 263 1751 [9] Radu I, Szafraniak I, Scholz R, Alexe M and Gösele U 2003 Appl. Phys. Lett. 82 2413 [10] Kim S, Geum D M, Park M S, Kim C Z and Choi W J 2015 Sol. Energy Mater. Sol. Cells 141 372 [11] Shigekawa N, Kozono R, Yoon S, Hara T, Liang J and Yasui A 2020 Sol. Energy Mater. Sol. Cells 210 110501 [12] Yamajo S, Yoon S, Liang J, Sodabanlu H, Watanabe K, Sugiyama M, Yasui A, Ikenaga E and Shigekawa N 2019 Appl. Surf. Sci. 473 627 [13] Essig S and Dimroth F 2013 ECS J. Solid State Sci. Technol. 2 Q178 [14] Yeo C Y, Xu D W, Yoon S F and Fitzgerald E A 2013 Appl. Phys. Lett. 102 054107 [15] Ohno Y, Liang J, Shigekawa N, Yoshida H, Takeda S, Miyagawa R, Shimizu Y and Nagai Y 2020 Appl. Surf. Sci. 525 146610 [16] Sakanas A, Semenova E, Ottaviano L, Mφrk J and Yvind K 2019 Microelectron. Eng. 214 93 [17] Kang Q, Wang C, Niu F, Zhou S, Xu J and Tian Y 2020 Ceram. Int. 46 22718 [18] Mu F, Morino Y, Jerchel K, Fujino M and Suga T 2017 Appl. Surf. Sci. 416 1007 [19] Ajima Y, Nakamura Y, Murakami K, Teramoto H, Jomen R, Zhiwei X, Dai P, Lu S and Uchida S 2018 Appl. Phys. Express 11 106501 [20] Takigawa R and Utsumi J 2020 Scr. Mater. 174 58 [21] Liang J, Masuya S, Kasu M and Shigekawa N 2017 Appl. Phys. Lett. 110 111603 [22] Liang J, Chai L, Nishida S, Morimoto M and Shigekawa N 2015 Jpn. J. Appl. Phys. 54 030211 [23] Takagi H, Maeda R, Hosoda N and Suga T 1999 Jpn. J. Appl. Phys. 38 1589 [24] Sakata M, Oyake T, Maire J, Nomura M, Higurashi E and Shiomi J 2015 Appl. Phys. Lett. 106 081603 [25] Plach T, Hingerl K, Tollabimazraehno S, Hesser G, Dragoi V and Wimplinger M 2013 J. Appl. Phys. 113 094905 [26] Tong Q Y and Gösele U 1999 Semiconductor wafer bonding: science and technology (Wiley) [27] Tong Q Y and Gösele U 1996 J. Electrochem. Soc. 143 1773 [28] Ohno Y, Yoshida H, Kamiuchi N, Aso R, Takeda S, Shimizu Y, Nagai Y, Liang J and Shigekawa N 2020 Jpn. J. Appl. Phys. 59 SBBB05 [29] Vincent S, Radu I, Landru D, Letertre F and Rieutord F 2009 Appl. Phys. Lett. 94 101914 [30] J.F. Ziegler, J.P. Biersack U L 1985 The Stopping and Range of Ions in Solids (Springer: Berlin/Heidelberg, Germany: In Ion Implantation Techniques) pp. 122-156 [31] Sadana D K, Sands T and Washburn J 1984 Appl. Phys. Lett. 44 623 [32] Haddara Y M and Bravman J C 1998 Annu. Rev. Mater. Sci. 28 185 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|