Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 076802    DOI: 10.1088/1674-1056/abf917
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Fabrication of GaAs/SiO2/Si and GaAs/Si heterointerfaces by surface-activated chemical bonding at room temperature

Rui Huang(黄瑞)1, Tian Lan(兰天)1, Chong Li(李冲)2, Jing Li(李景)1, and Zhiyong Wang(王智勇)1,†
1 Institute of Advanced Technology on Semiconductor Optics & Electronics, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China;
2 College of Microelectronics, Beijing University of Technology, Beijing 100124, China
Abstract  The room-temperature (RT) bonding mechanisms of GaAs/SiO2/Si and GaAs/Si heterointerfaces fabricated by surface-activated bonding (SAB) are investigated using a focused ion beam (FIB) system, cross-sectional scanning transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDX) and scanning acoustic microscopy (SAM). According to the element distribution detected by TEM and EDX, it is found that an intermixing process occurs among different atoms at the heterointerface during the RT bonding process following the surface-activation treatment. The diffusion of atoms at the interface is enhanced by the point defects introduced by the process of surface activation. We can confirm that through the point defects, a strong heterointerface can be created at RT. The measured bonding energies of GaAs/SiO2/Si and GaAs/Si wafers are 0.7 J/m2 and 0.6 J/m2. The surface-activation process can not only remove surface oxides and generate dangling bonds, but also enhance the atomic diffusivity at the interface.
Keywords:  surface-activation bonding      energy-dispersive x-ray spectroscopy      intermix      point defects  
Received:  11 March 2021      Revised:  13 April 2021      Accepted manuscript online:  19 April 2021
PACS:  68.55.ag (Semiconductors)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.16.Rf (Micro- and nanoscale pattern formation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505003 and 61674140), the Beijing Education Commission Project (Grant No. SQKM201610005008), and Beijing Postdoctoral Research Foundation (Grant No. 2020-Z2-043).
Corresponding Authors:  Zhiyong Wang     E-mail:  zyw_bjut@126.com

Cite this article: 

Rui Huang(黄瑞), Tian Lan(兰天), Chong Li(李冲), Jing Li(李景), and Zhiyong Wang(王智勇) Fabrication of GaAs/SiO2/Si and GaAs/Si heterointerfaces by surface-activated chemical bonding at room temperature 2021 Chin. Phys. B 30 076802

[1] Adachi S 1992 Physical properties of Ⅲ-V semiconductor compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (John Wiley & Sons, Inc)
[2] Look D C 1989 Electrical Characterization of GaAs Materials and Devices (John Wiley & Sons, Inc)
[3] Flederling R, Kelm M, Reuscher G, Ossau W, Schmidt G, Waag A and Molenkamp L W 1999 Nature 402 787
[4] Vilan A, Shanzer A and Cahen D 2000 Nature 404 166
[5] Tsintzos S I, Pelekanos N T, Konstantinidis G, Hatzopoulos Z and Savvidis P G 2008 Nature 453 372
[6] Yoon J, Jo S, Chun I S, Jung I, Kim H S, Meitl M, Menard E, Li X, Coleman J J, Paik U and Rogers J A 2010 Nature 465 329
[7] Yoo M J, Fulton T A, Hess H F, Willett R L, Dunkleberger L N, Chichester R J, Pfeiffer L N and West K W 1997 Science 276 579
[8] Jenkins P P, Macinnes A N, Tabib-azar M, Andrew R, Jenkins P P, Macinnes A N, Tabib-azar M and Barront A R 2016 Science 263 1751
[9] Radu I, Szafraniak I, Scholz R, Alexe M and Gösele U 2003 Appl. Phys. Lett. 82 2413
[10] Kim S, Geum D M, Park M S, Kim C Z and Choi W J 2015 Sol. Energy Mater. Sol. Cells 141 372
[11] Shigekawa N, Kozono R, Yoon S, Hara T, Liang J and Yasui A 2020 Sol. Energy Mater. Sol. Cells 210 110501
[12] Yamajo S, Yoon S, Liang J, Sodabanlu H, Watanabe K, Sugiyama M, Yasui A, Ikenaga E and Shigekawa N 2019 Appl. Surf. Sci. 473 627
[13] Essig S and Dimroth F 2013 ECS J. Solid State Sci. Technol. 2 Q178
[14] Yeo C Y, Xu D W, Yoon S F and Fitzgerald E A 2013 Appl. Phys. Lett. 102 054107
[15] Ohno Y, Liang J, Shigekawa N, Yoshida H, Takeda S, Miyagawa R, Shimizu Y and Nagai Y 2020 Appl. Surf. Sci. 525 146610
[16] Sakanas A, Semenova E, Ottaviano L, Mφrk J and Yvind K 2019 Microelectron. Eng. 214 93
[17] Kang Q, Wang C, Niu F, Zhou S, Xu J and Tian Y 2020 Ceram. Int. 46 22718
[18] Mu F, Morino Y, Jerchel K, Fujino M and Suga T 2017 Appl. Surf. Sci. 416 1007
[19] Ajima Y, Nakamura Y, Murakami K, Teramoto H, Jomen R, Zhiwei X, Dai P, Lu S and Uchida S 2018 Appl. Phys. Express 11 106501
[20] Takigawa R and Utsumi J 2020 Scr. Mater. 174 58
[21] Liang J, Masuya S, Kasu M and Shigekawa N 2017 Appl. Phys. Lett. 110 111603
[22] Liang J, Chai L, Nishida S, Morimoto M and Shigekawa N 2015 Jpn. J. Appl. Phys. 54 030211
[23] Takagi H, Maeda R, Hosoda N and Suga T 1999 Jpn. J. Appl. Phys. 38 1589
[24] Sakata M, Oyake T, Maire J, Nomura M, Higurashi E and Shiomi J 2015 Appl. Phys. Lett. 106 081603
[25] Plach T, Hingerl K, Tollabimazraehno S, Hesser G, Dragoi V and Wimplinger M 2013 J. Appl. Phys. 113 094905
[26] Tong Q Y and Gösele U 1999 Semiconductor wafer bonding: science and technology (Wiley)
[27] Tong Q Y and Gösele U 1996 J. Electrochem. Soc. 143 1773
[28] Ohno Y, Yoshida H, Kamiuchi N, Aso R, Takeda S, Shimizu Y, Nagai Y, Liang J and Shigekawa N 2020 Jpn. J. Appl. Phys. 59 SBBB05
[29] Vincent S, Radu I, Landru D, Letertre F and Rieutord F 2009 Appl. Phys. Lett. 94 101914
[30] J.F. Ziegler, J.P. Biersack U L 1985 The Stopping and Range of Ions in Solids (Springer: Berlin/Heidelberg, Germany: In Ion Implantation Techniques) pp. 122-156
[31] Sadana D K, Sands T and Washburn J 1984 Appl. Phys. Lett. 44 623
[32] Haddara Y M and Bravman J C 1998 Annu. Rev. Mater. Sci. 28 185
[1] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[2] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[3] Dual-wavelength distributed Bragg reflector semiconductor laser based on composite resonant cavity
Chen Cheng (陈琤), Zhao Ling-Juan (赵玲娟), Qiu Ji-Fang (邱吉芳), Liu Yang (刘扬), Wang Wei (王圩), Lou Cai-Yun (娄采云). Chin. Phys. B, 2012, 21(9): 094208.
[4] Formation energies and electronic structures of native point defects in potassium dihydrogen phosphate
Wang Kun-Peng(王坤鹏) and Huang Ye(黄烨) . Chin. Phys. B, 2011, 20(7): 077401.
[5] Monolithic integration of electroabsorption modulators and tunnel injection distributed feedback lasers using quantum well intermixing
Wang Yang(汪洋), Pan Jiao-Qing(潘教青), Zhao Ling-Juan(赵玲娟), Zhu Hong-Liang(朱洪亮), and Wang Wei(王圩). Chin. Phys. B, 2010, 19(12): 124215.
No Suggested Reading articles found!