Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 116102    DOI: 10.1088/1674-1056/ac673a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Equal compressibility structural phase transition of molybdenum at high pressure

Lun Xiong(熊伦)1,†, Bin Li(李斌)1,2, Fang Miao(苗芳)1, Qiang Li (李强)1, Guangping Chen(陈光平)1,2, Jinxia Zhu(竹锦霞)1, Yingchun Ding(丁迎春)3, and Duanwei He(贺端威)4,5,‡
1 School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China;
2 DaZhou Industrial Technology Institute of Intelligent Manufacturing, Dazhou 635000, China;
3 College of Optoelectronics Engineering, Chengdu University of Information Technology, Chengdu 610225, China;
4 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
5 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
Abstract  We have studied the high-pressure compression behavior of molybdenum up to 60 GPa by synchrotron radial x-ray diffraction (RXRD) in a diamond anvil cell (DAC). It is found that all diffraction peaks of molybdenum undergo a split at around 27 GPa, and we believe that a phase transition from a body-centered cubic structure to a rhombohedral structure at room pressure has occurred. The slope of pressure-volume curve shows continuity before and after this phase transition, when fitting the pressure-volume curves of the body-centered cubic structure at low pressure and the rhombohedral structure at high pressure. A bulk modulus of 261.3 (2.7) GPa and a first-order derivative of the bulk modulus of 4.15 (0.14) are obtained by using the nonhydrostatic compression data at the angle ψ = 54.7° between the diffracting plane normal and stress axis.
Keywords:  molybdenum      high pressure      phase transition      radial x-ray diffraction      diamond anvil cell  
Received:  11 February 2022      Revised:  02 April 2022      Accepted manuscript online:  14 April 2022
PACS:  61.05.cp (X-ray diffraction)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  64.30.Ef (Equations of state of pure metals and alloys)  
  64.70.kd (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075163), the Open fund project of Industrial Technology Institute of Sichuan University of Arts and Science, China (Grant No. ZNZZ2101) and the Project of Ph. D special research of Sichuan University of Arts and Science, China (Grant No. 2019BS006Z). The synchrotron radiation RXRD experiments in this work were performed at 4W2 beamline of Beijing Synchrotron Radiation Facility (BSRF), which is supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N03 and KJCX2-SW-N20).
Corresponding Authors:  Lun Xiong, Duanwei He     E-mail:  1094129778@qq.com;duanweihe@scu.edu.cn

Cite this article: 

Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威) Equal compressibility structural phase transition of molybdenum at high pressure 2022 Chin. Phys. B 31 116102

[1] Hixson R S, Boness D A, Shaner J W and Moriarty J A 1989 Phys. Rev. Lett. 62 637
[2] Vohra Y K and Ruoff A L 1990 Phys. Rev. B 42 8651
[3] Santamaria-Perez D, Ross M, Errandonea D, Mukherjee G D, Mezouar M and Boehler R 2009 J. Chem. Phys. 130 124509
[4] Moriarty J A 1992 Phys. Rev. B 45 2004
[5] Boettger J C 1999 J. Phys.: Condens Matter 11 3237
[6] Belonoshko A B, Burakovsky L, Chen S P, Johansson B, Mikhaylushkin A S, Preston D L, Simak S I and Swift D C 2008 Phys. Rev. Lett. 100 135701
[7] Cazorl A C, Alfed D and Gillan M J 2012 Phys. Rev. B 85 064113
[8] Wang B, Zhang G B and Wang Y X 2013 J. Alloys Compd. 556 116
[9] Zhao K, Cai L C, Zhang X L and Luo F 2016 Chin. J. High Press. Phys. 30 94
[10] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[11] Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Press. Res. 14 235
[12] Xiong L and Liu J 2018 Chin. Phys. B 27 036101
[13] Liu J 2016 Chin. Phys. B 25 076106
[14] Ji C, Levitas V I, Zhu H Y, Chaudhuri J, Marathe A and Ma Y Z 2012 Proc. Natl. Acad. Sci. USA 109 19108
[15] Ding Y, Ahuja R, Shu J F, Chow P, Luo W and Mao H K 2007 Phys. Rev. Lett. 98 085502
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[8] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[9] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[10] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[13] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[14] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[15] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
No Suggested Reading articles found!