RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟)1, Yunxin Tang(唐蕴芯)1, Jian Zhang(张建)1,2,†, Wenfei Li(李文飞)1,2, Jun Wang(王骏)1,2, and Wei Wang(王炜)1,2,‡
1 Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210008, China; 2 Institute for Brain Sciences, Nanjing University, Nanjing 210008, China
Abstract RNAs play crucial and versatile roles in cellular biochemical reactions. Since experimental approaches of determining their three-dimensional (3D) structures are costly and less efficient, it is greatly advantageous to develop computational methods to predict RNA 3D structures. For these methods, designing a model or scoring function for structure quality assessment is an essential step but this step poses challenges. In this study, we designed and trained a deep learning model to tackle this problem. The model was based on a graph convolutional network (GCN) and named RNAGCN. The model provided a natural way of representing RNA structures, avoided complex algorithms to preserve atomic rotational equivalence, and was capable of extracting features automatically out of structural patterns. Testing results on two datasets convincingly demonstrated that RNAGCN performs similarly to or better than four leading scoring functions. Our approach provides an alternative way of RNA tertiary structure assessment and may facilitate RNA structure predictions. RNAGCN can be downloaded from https://gitee.com/dcw-RNAGCN/rnagcn.
Fund: This study was funded by the National Natural Science Foundation of China (Grant Nos. 11774158 to JZ, 11934008 to WW, and 11974173 to WFL). The authors acknowledge High Performance Computing Center of Advanced Microstructures, Nanjing University for the computational support.
Corresponding Authors:
Jian Zhang, Wei Wang
E-mail: jzhang@nju.edu.cn;wangwei@nju.edu.cn
Cite this article:
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜) RNAGCN: RNA tertiary structure assessment with a graph convolutional network 2022 Chin. Phys. B 31 118702
[1] Krochmal D, Shao Y, Li N S, DasGupta S, Shelke S A, Koirala D and Piccirilli J A 2022 Nat. Chem. Biol.18 376 [2] Oleksiak M F, Roach J L and Crawford D L 2005 Nat. Genet.37 67 [3] Zhang Y, Wang J and Xiao Y 2020 Comput. Struct. Biotechnol. J.18 2416 [4] Watkins A M, Rangan R and Das R 2020 Structure28 963 [5] Krokhotin A, Houlihan K and Dokholyan N V 2015 Bioinformatics31 2891 [6] Parisien M and Major F 2008 Nature452 51 [7] Zhao C, Xu X, Chen S J, Kaufmann M, et al. 2017 Functional Genomics: Methods and Protocols (New York: Springer), pp. 3-15 [8] Boniecki M J, Lach G, Dawson W K, Tomala K, Lukasz P, Soltysinski T, Rother K M and Bujnicki J M 2016 Nucleic Acids Res.44 e63 [9] Zhao Y, Huang Y, Gong Z, Wang Y, Man J and Xiao Y 2012 Sci. Rep.2 734 [10] Wang J, Mao K, Zhao Y, Zeng C, Xiang J, Zhang Y and Xiao Y 2017 Nucleic Acids Research45 6299 [11] Xu X and Chen S J 2021 Methods Mol. Biol2323 1 [12] Zhang J, Zhang Y J and Wang W 2010 Chin. Phys. Lett.27 118702 [13] Zhang D, Li J and Chen S J 2021 Journal of Chemical Theory and Computation17 1842 [14] Xu X and Chen S J 2016 PloS One11 e0163454 [15] Tan Z J and Chen S J 2010 Biophysical Journal99 1565 [16] Gong S, Liu T G, Wang Y L and Zhang W B 2020 Chin. Phys. B29 108703 [17] Shi Y Z, Wu Y Y, Wang F H and Tan Z J 2014 Chin. Phys. B23 78701 [18] Wang W B, Li X Y and Su J G 2022 Chin. Phys. B31 68704 [19] He X L, Wang J, Wang J and Xiao Y 2020 Chin. Phys. B29 78702 [20] Tan Y L, Feng C J, Wang X X, Zhang W B and Tan Z J 2021 Chin. Phys. B30 28705 [21] Yang Y, Gu Q, Zhang B G, Shi Y Z and Shao Z G 2018 Chin. Phys. B27 38701 [22] Alford R F, Leaver-Fay A, Jeliazkov J R, et al. 2017 Journal of Chemical Theory and Computation13 3031 [23] Wang J, Zhao Y, Zhu C and Xiao Y 2015 Nucleic Acids Res.43 e63 [24] Capriotti E, Norambuena T, Marti-Renom M A and Melo F 2011 Bioinformatics27 1086 [25] Bernauer J, Huang X, Sim A Y and Levitt M 2011 RNA17 1066 [26] Zhang T, Hu G, Yang Y, Wang J and Zhou Y 2020 J. Comput. Biol27 856 [27] Tan Y L, Wang X, Shi Y Z, Zhang W and Tan Z J 2022 Biophys. J.121 142 [28] Devlin J, Chang M W, Lee K and Toutanova K 2019 Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 4171-4186 [29] Brown T B, Mann B, Ryder N, et al. 2020 Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, Article 159 [30] Arumugam K, Naved M, Shinde P, Leiva-Chauca O, Huaman-Osorio A and Gonzales-Yanac T 2021 Materials Today: Proceedings [31] Jumper J, Evans R, Pritzel A, et al. 2021 Nature596 583 [32] Eismann S, Townshend R J L, Thomas N, Jagota M, Jing B and Dror R O 2021 Proteins89 493 [33] Pei B and Hsu Y H 2020 Immunogenetics72 295 [34] Huang B, Du Y Y, Zhang S, Li W F, Wang J and Zhang J 2020 Chin. Phys. B29 108704 [35] Li J, Zhu W, Wang J, Li W, Gong S, Zhang J and Wang W 2018 PLoS Comput. Biol.14 e1006514 [36] Min C, Xu J, Xiao L, Zhao D, Nie Y and Dai B 2021 IEEE Robotics and Automation Letters6 3445 [37] Wu Z, Pan S, Chen F, Long G, Zhang C and Yu P S 2021 IEEE Trans. Neural Netw. Learn. Syst.32 4 [38] Li G, Muller M, Thabet A and Ghanem B 2019 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9266-9275 [39] Zhang C, Song D, Huang C, Swami A and Chawla N V 2019 Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 793-803 [40] Li G, Müler M, Ghanem B and Koltun V 2021 Proceedings of the 38th International Conference on Machine Learning, Proceedings of Machine Learning Research, pp. 6437-6449 [41] Li X and Cheng Y 2021 Neural Netw.140 130 [42] Fang X, Liu L, Lei J, He D, Zhang S, Zhou J, Wang F, Wu H and Wang H 2022 Nature Machine Intelligence4 127 [43] Fout A, Byrd J, Shariat B and Ben-Hur A 2017 Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, pp. 6533-6542 [44] Baldassarre F, Menendez Hurtado D, Elofsson A and Azizpour H 2021 Bioinformatics37 360 [45] Sanyal S, Anishchenko I, Dagar A, Baker D and Talukdar P 2020 bioRxiv:0406.028266v1 [46] Quan Z, Guo Y, Lin X, Wang Z J and Zeng X 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 18-21 Nov. 2019, pp. 717-722 [47] Huang Y A, Huang Z A, You Z H, Zhu Z, Huang W Z, Guo J X and Yu C Q 2019 Front Genet10 758 [48] Leontis N B, Zirbel C L (Leontis N, Westhof E ed) 2012 RNA 3D Structure Analysis and Prediction (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 281-298 [49] Nawrocki E P and Eddy S R 2013 Bioinformatics29 2933 [50] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 Software X1-2 19 [51] Miao Z, Adamiak R W, Antczak M, et al. 2020 RNA26 982 [52] Tan Y L, Feng C J, Jin L, Shi Y Z, Zhang W and Tan Z J 2019 RNA25 793 [53] Zwieb C, Nakao Y, Nakashima T, Takagi H, Goda S, Andersen E S, Kakuta Y and Kimura M 2011 Biochem Biophys Res. Commun.414 517 [54] Townshend R, Eismann S, Watkins A, Rangan R, Karelina M, Das R and Dror R 2021 Science373 1047 [55] Xiong G, Xi K, Zhang X and Tan Z J 2018 Chin. Phys. B27 18203 [56] Bao L, Zhang X, Lei J and Tan Z J 2016 Chin. Phys. B25 18703
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.