Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君)1, Cuihuan Ge(葛翠环)1, Kai Braun1,2, Mai He(贺迈)1, Siman Liu(刘思嫚)1, Qingjun Tong(童庆军)1, Xiao Wang(王笑)1,†, and Anlian Pan(潘安练)3
1 Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China; 2 Institute of Physical and Theoretical Chemistry and LISA+, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany; 3 College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
Abstract Due to the large exciton binding energy, two-dimensional (2D) transition metal dichalcogenides (TMDCs) provide an ideal platform for studying excitonic states and related photonics and optoelectronics. Polarization states lead to distinct light-matter interactions which are of great importance for device applications. In this work, we study polarized photoluminescence spectra from intralayer exciton and indirect exciton in WS2 and WSe2 atomic layers, and interlayer exciton in WS2/WSe2 heterostructures by radially and azimuthally polarized cylindrical vector laser beams. We demonstrated the same in-plane and out-of-plane polarization behavior from the intralayer and indirect exciton. Moreover, with these two laser modes, we obtained interlayer exciton in WS2/WSe2 heterostructures with stronger out-of-plane polarization, due to the formation of vertical electric dipole moment.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91850116, 51772084, 52022029, and U19A2090), Hunan Provincial Natural Science Foundation of China (Grant Nos. 2018RS3051 and 2018WK4004), and the Key Program of the Hunan Provincial Science and Technology Department, China (Grant No. 2019XK2001).
Corresponding Authors:
Xiao Wang
E-mail: xiao_wang@hnu.edu.cn
Cite this article:
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练) Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams 2021 Chin. Phys. B 30 087802
[1] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol.7 699 [2] Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys.10 343 [3] Sun Z P, Martinez A and Wang F 2016 Nat. Photon.10 227 [4] Wang J, Han J Y, Chen X Q and Wang X R 2019 Infomat.1 33 [5] Ge C H, Li H L, Zhu X L and Pan A L 2017 Chin. Phys. B 26 034208 [6] Cheng Q L, Pang J B, Sun D H, Wang J G, Zhang S, Liu F, Chen Y K, Yang R Q, Liang N, Lu X H, Ji Y C, Wang J, Zhang C C, Sang Y H, Liu H and Zhou W J 2020 Infomat. 2 656 [7] Cheng Y, Huang C, Hong H, Zhao Z X and Liu K H 2019 Chin. Phys. B28 107304 [8] Qin M S, Zhu P F, Ye X G, Xu W Z, Song Z H, Liang J, Liu K H and Liao Z M 2021 Chin. Phys. Lett.38 017301 [9] Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y L, Aslan O B, Reichman D R, Hybertsen M S and Heinz T F 2014 Phys. Rev. Lett.113 076802 [10] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H and Xu X D 2014 Nat. Nanotechnol.9 268 [11] Ciarrocchi A, Unuchek D, Avsar A, Watanabe K, Taniguchi T and Kis A 2018 Nat. Photon.13 131 [12] Zheng W H, Jiang Y, Hu X L, Li H L, Zeng Z X S, Wang X and Pan A L 2018 Adv. Opt. Mater.6 1800420 [13] Ma X L, Zhang R J, An C H, Wu S, Hu X D and Liu J 2019 Chin. Phys. B28 037803 [14] Zeng Z X S, Wang X and Pan A L 2020 Acta Phys. Sin.69 184210 (in Chinese) [15] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett.105 136805 [16] Ramasubramaniam A, Naveh D and Towe E 2011 Phys. Rev. B84 205325 [17] Zeng F, Zhang W B and Tang B Y 2015 Chin. Phys. B24 097103 [18] Cheng Y, Huang C, Hong H, Zhao Z X and Liu K H 2019 Chin. Phys. B28 107304 [19] Paradisanos I, Shree S, George A, Leisgang N, Robert C, Watanabe K, Taniguchi T, Warburton R J, Turchanin A, Marie X, Gerber I C and Urbaszek B 2020 Nat. Commun.11 2391 [20] Geim A K and Grigorieva I V 2013 Nature499 419 [21] Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X F 2016 Nat. Rev. Mater.1 16042 [22] Zhang D L, Liu Y, He M, Zhang A, Chen S L, Tong Q J, Huang L Y, Zhou Z Y, Zheng W H, Chen M X, Braun K, Meixner A J, Wang X and Pan A L 2020 Nat. Commun.11 4442 [23] Li J H, Bing D, Wu Z, Wu Z T, Wu G Q, Bai J, Du R X and Qi Z Q 2020 Chin. Phys. B29 017802 [24] He Y F, Wang L X, Xiao Z X, Lv Y W, Liao L and Jiang C Z 2020 Chin. Phys. Lett.37 088502 [25] Chang Z, Yuan K P, Sun Z H, Zhang X L, Gao Y F, Gong X J and Tang D W 2021 Chin. Phys. B30 034401 [26] Li L H, Zheng W H, Ma C, Zhao H P, Jiang F, Ouyang Y, Zheng B Y, Fu X W, Fan P, Zheng M, Li Y, Xiao Y, Cao W P, Jiang Y, Zhu X L, Zhuang X J and Pan A L 2020 Nano Lett.20 3361 [27] Miller B, Steinhoff A, Pano B, Klein J, Jahnke F, Holleitner A and Wurstbauer U 2017 Nano Lett.17 5229 [28] Jauregui L A, Joe A Y, Pistunova K, Wild D S, High A A, Zhou Y, Scuri G, De Greve K, Sushko A, Yu C-H, Taniguchi T, Watanabe K, Needleman D J, Lukin M D, Park H and Kim P 2019 Science366 870 [29] Unuchek D, Ciarrocchi A, Avsar A, Watanabe K, Taniguchi T and Kis A 2018 Nature560 340 [30] Liu Y D, Dini K, Tan Q H, Liew T, Novoselov K S and Gao W B 2020 Sci. Adv. 6 1830 [31] Li W J, Lu X, Dubey S, Devenica L and Srivastava A 2020 Nat. Mater. 19 624 [32] Funke S, Miller B, Parzinger E, Thiesen P, Holleitner A W and Wurstbauer U 2016 J. Phys. Condens. Matter28 385301 [33] Zhan Q W 2009 Adv. Opt. Photon.1 1 [34] Züchner T, Failla A V and Meixner A J 2011 Angew. Chem. Int. Ed.50 5274 [35] Novotny L, Beversluis M R, Youngworth K S and Brown T G 2001 Phys. Rev. Lett.86 5251 [36] Wang X, Broch K, Scholz R, Schreiber F, Meixner A J and Zhang D 2014 J. Phys. Chem. Lett.5 1048 [37] Wang X, Zhuang X J, Wackenhut F, Li Y Y, Pan A and Meixner A J 2016 Laser Photonics Rev.10 835 [38] Wang X, Zeng Z X S, Zhuang X J, Wackenhut F, Pan A L and Meixner A J 2017 Opt. Lett.42 2623 [39] Bautista G, Huttunen M J, Kontio J M, Simonen J and Kauranen M 2013 Opt. Express21 21918 [40] Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, van der Zant H S J and Steele G A 2014 2D Materials 1 011002 [41] Zhao W J, Ghorannevis Z, Amara K K, Pang J R, Toh M, Zhang X, Kloc C, Tan P H and Eda G 2013 Nanoscale 5 9677 [42] Zhao W J, Ribeiro R M, Toh M, Carvalho A, Kloc C, Castro Neto A H C and Eda G 2013 Nano Lett.13 5627 [43] Zeng H, Liu G B, Dai J F, Yan Y J, Zhu B, He R, Xie L, Xu S J, Chen X H, Yao W and Cui X D 2013 Sci. Rep.3 1608 [44] Yu H, Liu G B and Yao W 2018 2D Material 5 035021 [45] Sun S B, Dang J C, Xie X, Yu Y, Yang L L, Xiao S, Wu S Y, Peng K, Song F L, Wang Y N, Yang J N, Qian C J, Zuo Z C and Xu X L 2020 Chin. Phys. Lett. 37 087801 [46] Yu J, Kuang X F, Zhong J H, Cao L K, Zeng C, Ding J N, Cong C X, Wang S H, Dai P F, Yue X F, Liu Z W and Liu Y P 2020 Opt. Express28 13260 [47] Ye T, Li J Z and Li D H 2019 Small15 1902424
[1]
Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.