Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 027504    DOI: 10.1088/1674-1056/ac9a3b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction

Jia Chen(陈佳)1,2, Peiyue Yu(于沛玥)1,2, Lei Zhao(赵磊)1,2, Yanru Li(李彦如)1,2, Meiyin Yang(杨美音)1, Jing Xu(许静)1,2, Jianfeng Gao(高建峰)1, Weibing Liu(刘卫兵)1, Junfeng Li(李俊峰)1, Wenwu Wang(王文武)1,2, Jin Kang(康劲)3, Weihai Bu(卜伟海)3, Kai Zheng(郑凯)3, Bingjun Yang(杨秉君)4, Lei Yue(岳磊)4, Chao Zuo(左超)4, Yan Cui(崔岩)1,‡, and Jun Luo(罗军)1,2,†
1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 University of Chinese of Academy Sciences(UCAS), Beijing 100049, China;
3 Semiconductor Technology Innovation Center(Beijing) Corporation, Beijing 100176, China;
4 ULVAC Research Center Suzhou CO., Ltd., Suzhou 215026, China
Abstract  We construct the Hall-bar device with the size of several hundred nanometers based on the HZO/Co multiferroic heterojunction. A remarkable voltage-controlled magnetism is observed in the device that possesses both ferroelectric property and perpendicular magnetic anisotropy (PMA). The nucleation field and coercivity can be modulated by voltage pulse while saturation field keeps stable. The non-volatile and reversible voltage-controlled magnetism is ascribable to interfacial charges caused by ferroelectric polarization. Meanwhile, the effective anisotropy energy density (Ku) can also be controlled by voltage pulse, a decrease of 83% and increase of 28% in Ku are realized under -3-V and 3-V pulses, respectively. Because the energy barrier is directly proportional to Ku under a given volume, a decreased or enhanced energy barrier can be controlled by voltage pulse. Thus, it is an effective method to realize low-power and high-stability magneto-resistive random-access memory (MRAM).
Keywords:  multiferroic heterojunction      voltage-controlled magnetism      energy barrier  
Received:  20 August 2022      Revised:  09 October 2022      Accepted manuscript online:  14 October 2022
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  77.55.Nv (Multiferroic/magnetoelectric films)  
Fund: Project supported by Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA18000000), the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015097), and Guangzhou City Research and Development Program in Key Fields (Grant No. 202103020001).
Corresponding Authors:  Jun Luo, Yan Cui     E-mail:  luojun@ime.ac.cn;cuiyan@ime.ac.cn

Cite this article: 

Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军) Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction 2023 Chin. Phys. B 32 027504

[1] He H, Zhao J T, Luo Z L, Yang Y J, Xu H, Hong B, Wang L X, Wang R X and Gao C 2016 Chin. Phys. Lett. 33 67502
[2] Huang Q, Dong Y, Zhao X, Wang J, Chen Y, Bai L, Dai Y, Dai Y, Yan S and Tian Y 2020 Adv. Electron. Mater. 6 2070013
[3] Li Y, Luo W, Zhu L, Zhao J and Wang K 2015 J. Magn. Magn. Mater. 375 148
[4] Ren J, Li J, Zhang S, Li J, Su W, Wang D, Cao Q and Du Y 2022 Chin. Phys. B 31 077502
[5] Nozaki T, Yamamoto T, Tamaru S, Kubota H, Fukushima A, Suzuki Y and Yuasa S 2018 APL Mater. 6 026101
[6] Shiota Y, Bonell F, Miwa S, Mizuochi N, Shinjo T and Suzuki Y 2013 Appl. Phys. Lett. 103 082410
[7] Song J, Ahmed I, Zhao Z, Zhang D, Sapatnekar S S, Wang J P and Kim C H 2018 IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 4 76
[8] Bauer U, Yao L, Tan A J, Agrawal P, Emori S, Tuller H L, van Dijken S and Beach G S 2015 Nat. Mater. 14 174
[9] Gilbert D A, Grutter A J, Arenholz E, Liu K, Kirby B J, Borchers J A and Maranville B B 2016 Nat. Commun. 7 12264
[10] Quintana A, Menendez E, Liedke M O, Butterling M, Wagner A, Sireus V, Torruella P, Estrade S, Peiro F, Dendooven J, Detavernier C, Murray P D, Gilbert D A, Liu K, Pellicer E, Nogues J and Sort J 2018 ACS Nano 12 10291
[11] Rojas J, Quintana A, Lopeandía A, Salguero J, Costa-Krämer J L, Abad L, Liedke M O, Butterling M, Wagner A, Henderick L, Dendooven J, Detavernier C, Sort J and Menéndez E 2020 Adv. Funct. Mater. 30 2003704
[12] Daumont C, Wolfman J, Autret-Lambert C, Andreazza P and Negulescu B 2018 Appl. Phys. Lett. 112 112401
[13] Vermeulen B F, Ciubotaru F, Popovici M I, Swerts J, Couet S, Radu I P, Stancu A, Temst K, Groeseneken G, Adelmann C and Martens K M 2019 ACS Appl. Mater. Interfaces 11 34385
[14] Muller J, Boscke T S, Schroder U, Mueller S, Brauhaus D, Bottger U, Frey L and Mikolajick T 2012 Nano Lett. 12 4318
[15] Tian G, Xu G, Yin H, Yan G, Zhang Z, Li L, Sun X, Chen J, Zhang Y and Bi J 2022 Adv. Mater. Interfaces 9 2102351
[16] Desbiolles B X E, Bertsch A and Renaud P 2019 Microsyst. Nanoeng. 5 11
[17] Islam R, Cui B and Miao G X 2020 J. Vac. Sci. Technol. B 38 050801
[18] Kinoshita K, Utsumi H, Suemitsu K, Hada H and Sugibayashi T 2010 Jpn. J. Appl. Phys. 49 08JB02
[19] Park S, Yang K, Lee H, Kim D, Baek J, Shim T, Park J and Yeom G 2017 ECS J. Solid State Sci. Technol. 6 N148
[20] Lau Y C, Chi Z, Taniguchi T, Kawaguchi M, Shibata G, Kawamura N, Suzuki M, Fukami S, Fujimori A, Ohno H and Hayashi M 2019 Phys. Rev. Mater. 3 104419
[21] Nistor L E, Rodmacq B, Auffret S and Dieny B 2009 Appl. Phys. Lett. 94 012512
[22] Sun Y, Ba Y, Chen A, He W, Wang W, Zheng X, Zou L, Zhang Y, Yang Q, Yan L, Feng C, Zhang Q, Cai J, Wu W, Liu M, Gu L, Cheng Z, Nan C W, Qiu Z, Wu Y, Li J and Zhao Y 2017 ACS Appl. Mater. Interfaces 9 10855
[23] Moon K W, Lee J C, Choe S B and Shin K H 2009 Rev. Sci. Instrum. 80 113904
[24] Shepley P M, Rushforth A W, Wang M, Burnell G and Moore T A 2015 Sci. Rep. 5 7921
[25] Zhu T 2014 Chin. Phys. B 23 047504
[26] Liu H F, Ali S S and Han X F 2014 Chin. Phys. B 23 077501
[27] Wu X W, Guslienko K Y, Chantrell R W and Weller D 2003 Appl. Phys. Lett. 82 3475
[28] Shiota Y, Murakami S, Bonell F, Nozaki T, Shinjo T and Suzuki Y 2011 Appl. Phys. Express 4 043005
[29] Zhu J, Katine J A, Rowlands G E, Chen Y J, Duan Z, Alzate J G, Upadhyaya P, Langer J, Amiri P K, Wang K L and Krivorotov I N 2012 Phys. Rev. Lett. 108 197203
[30] Li X, Fitzell K, Wu D, Karaba C T, Buditama A, Yu G, Wong K L, Altieri N, Grezes C, Kioussis N, Tolbert S, Zhang Z, Chang J P, Khalili Amiri P and Wang K L 2017 Appl. Phys. Lett. 110 052401
[31] Wang L, Li X, Sasaki T, Wong K, Yu G, Peng S, Zhao C, Ohkubo T, Hono K, Zhao W and Wang K 2020 Sci. Chin.-Phys. Mech. Astron. 63 277512
[32] Vaz C A 2012 J. Phys.: Condens. Matter 24 333201
[33] Velev J P, Jaswal S S and Tsymbal E Y 2011 Philos. Trans. A: Math. Phys. Eng. Sci. 369 3069
[34] Duan C G, Jaswal S S and Tsymbal E Y 2006 Phys. Rev. Lett. 97 047201
[35] Duan C G, Velev J P, Sabirianov R F, Zhu Z, Chu J, Jaswal S S and Tsymbal E Y 2008 Phys. Rev. Lett. 101 137201
[36] Haraguchi S, Tsujikawa M, Gotou J and Oda T 2011 J. Phys. D: Appl. Phys. 44 064005
[37] Nakamura K, Shimabukuro R, Fujiwara Y, Akiyama T, Ito T and Freeman A J 2009 Phys. Rev. Lett. 102 187201
[38] Jia C L, Wei T L, Jiang C J, Xue D S, Sukhov A and Berakdar J 2014 Phys. Rev. B 90 054423
[39] Zhou C, Shen L, Liu M, Gao C, Jia C, Jiang C and Xue D 2018 Adv. Funct. Mater. 28 1707027
[40] Lin Y D, Yeh P C, Tang Y T, Su J W, Yang H Y, Chen Y H, Lin C P, Yeh P S, Chen J C and Tzeng P J 2021 IEEE International Electron Devices Meeting (IEDM), December 13-15, 2021, San Francisco, USA, p. 6.4.1
[1] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[2] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[3] Analysis of meniscus beneath metastable droplets and wetting transition on micro/nano textured surfaces
Yanjie Li(李艳杰), Xiangqin Li(李香琴), Tianqing Liu(刘天庆), Weiguo Song(宋伟国). Chin. Phys. B, 2018, 27(8): 086801.
[4] Dissociation of H2 on Mg-coated B12C6N6
Li Ma(马丽), Xue-Ling Jin(金雪玲), Hui-Hui Yang(杨慧慧), Xiao-Xia Wang(王小霞), Ning Du(杜宁), Hong-Shan Chen(陈宏善). Chin. Phys. B, 2017, 26(6): 068801.
[5] Combined multi-level quantum mechanics theories and molecular mechanics study of water-induced transition state of OH-+CO2 reaction in aqueous solution
Chen Li(李琛), Meixing Niu(牛美兴), Peng Liu(刘鹏), Yongfang Li(李永方), Dunyou Wang(王敦友). Chin. Phys. B, 2017, 26(10): 103401.
[6] Influence of Ga+ ion irradiation on thermal relaxation of exchange bias field in exchange-coupled CoFe/IrMn bilayers
Qi Xian-Jin(祁先进), Wang Yin-Gang(王寅岗), Miao Xue-Fei(缪雪飞), Li Zi-Quan(李子全), and Huang Yi-Zhong(黄一中). Chin. Phys. B, 2011, 20(5): 057503.
[7] Dynamics of Bose–Einstein condensate in a harmonic potential and a Gaussian energy barrier
Hua Wei(花巍), Li Bin(李彬), and Liu Xue-Shen(刘学深). Chin. Phys. B, 2011, 20(1): 010311.
[8] Thermal relaxation of exchange bias field in an exchange coupled CoFe/IrMn bilayer
Qi Xian-Jin(祁先进), Wang Yin-Gang(王寅岗), Zhou Guang-Hong(周广宏), Li Zi-Quan(李子全), and Guo Min(郭敏). Chin. Phys. B, 2010, 19(3): 037503.
No Suggested Reading articles found!