Special Issue:
TOPICAL REVIEW — Quantum dot displays
|
TOPICAL REVIEW—Quantum dot displays |
Prev
Next
|
|
|
InP quantum dots-based electroluminescent devices |
Qianqian Wu(吴倩倩)1,2, Fan Cao(曹璠)2, Lingmei Kong(孔令媚)1,2, Xuyong Yang(杨绪勇)2 |
1 School of Material Science and Engineering, Shanghai University, Shanghai 200072, China; 2 Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China |
|
|
Abstract Indium phosphide (InP) quantum dots (QDs) have shown great potential to replace the widely applied toxic cadmium-containing and lead perovskite QDs due to their similar emission wavelength range and emission peak width but without intrinsic toxicity. Recently, electrically driven red and green InP-based quantum-dot light-emitting diodes (QLEDs) have achieved great progress in external quantum efficiency (EQE), reaching up to 12.2% and 6.3%, respectively. Despite the relatively poor device performance comparing with cadmium selenide (CdSe)-and perovskite-based QLEDs, these encouraging facts with unique environmental friendliness and solution-processability foreshadow the enormous potential of InP-based QLEDs for energy-efficient, high-color-quality thin-film display and solid-state lighting applications. In this article, recent advances in the research of the InP-based QLEDs have been discussed, with the main focus on device structure selection and interface research, as well as our outlook for on-going strategies of high-efficiency InP-based QLEDs.
|
Received: 20 August 2019
Revised: 10 September 2019
Accepted manuscript online:
|
PACS:
|
81.07.Ta
|
(Quantum dots)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51675322, 61605109, and 61735004), the National Key Research and Development Program of China (Grant No. 2016YFB0401702), Shanghai Science and Technology Committee, China (Grant No. 19010500600), Shanghai Rising-Star Program, China (Grant No. 17QA1401600), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China. |
Corresponding Authors:
Xuyong Yang
E-mail: yangxy@shu.edu.cn
|
Cite this article:
Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇) InP quantum dots-based electroluminescent devices 2019 Chin. Phys. B 28 118103
|
[34] |
Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R and Yang H 2014 Chem. Mater. 27 197
|
[1] |
Cho K S, Lee E K, Joo W J, Jang E, Kim T H, Lee S J, Kwon S J, Han J Y, Kim B K, Choi B L and Kim J M 2009 Nat. Photon. 3 341
|
[35] |
Cao F, Wang S, Wang F, Wu Q, Zhao D and Yang X 2018 Chem. Mater. 30 8002
|
[2] |
Wang C, Shim M and Guyot-Sionnest P 2001 Science 291 2390
|
[36] |
Small C E, Tsang S W, Kido J, So S K and So F 2012 Adv. Funct. Mater. 22 3261
|
[3] |
Qian L, Zheng Y, Xue J and Holloway P H 2011 Nat. Photon. 5 543
|
[37] |
Kirkwood N, Singh B and Mulvaney P 2016 Adv. Mater. Interfaces 3 1600868
|
[4] |
Shirasaki Y, Supran G J, Bawendi M G and Bulović V 2013 Nat. Photon. 7 13
|
[38] |
Yuan G, Gomez D E, Kirkwood N, Boldt K and Mulvaney P 2018 ACS Nano 12 3397
|
[5] |
Mashford B S, Stevenson M, Popovic Z, Hamilton C, Zhou Z, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S and Kazlas P T 2013 Nat. Photon. 7 407
|
[39] |
Kim Y, Ippen C, Fischer B, Lange A and Wedel A 2015 J. Soc. Inf. Disp. 23 377
|
[6] |
Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J and Peng X 2014 Nature 515 96
|
[40] |
Kim D, Fu Y, Kim S, Lee W, Lee K H, Chung H K, Lee H J, Yang H and Chae H 2017 ACS Nano 11 1982
|
[7] |
Shen H, Gao Q, Zhang Y, Lin Y, Lin Q, Li Z, Chen L, Zeng Z, Li X, Jia Y, Wang S, Du Z, Li L S and Zhang Z 2019 Nat. Photon. 13 192
|
[41] |
Wu H, Huang F, Peng J and Cao Y 2005 Org. Electron. 6 118
|
[8] |
Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q and Wei Z 2018 Nature 562 245
|
[42] |
Wang H C, Zhang H, Chen H Y, Yeh H C, Tseng M R, Chung R J, Chen S and Liu R S 2017 Small 13 1603962
|
[9] |
Walters G, Wei M, Voznyy O, Quintero-Bermudez R, Kiani A, Smilgies D M, Munir R, Amassian A, Hoogl S and Sargent E 2018 Nat. Commun. 9 4214
|
[43] |
Hahm D, Chang J H, Jeong B G, Park P, Kim J, Lee S, Choi J, Kim W D, Rhee S, Lim J, Lee D C, Lee C, Char K and Bae W K 2019 Chem. Mater. 31 3476
|
[10] |
Supran G J, Shirasaki Y, Song, K W, Caruge J M, Kazlas P T, Coe-Sullivan S, Andrew T L, Bawendi M G and Bulović V 2013 MRS Bull. 38 703
|
[11] |
Zheng J J, Wang Y R, Yu K H, Xu X X, Sheng X X, Hu E T and Wei W 2018 Acta Phys. Sin. 67 118502(in Chinese)
|
[12] |
Anc M J, Pickett N L, Gresty N C, Harris J A and Mishra K C 2013 ECS J. Solid State Sci. Technol. 2 R3071
|
[13] |
Derfus A M, Chan W C and Bhatia S N 2004 Nano Lett. 4 11
|
[14] |
Hardman R 2006 Environ. Health Perspect. 114 165
|
[15] |
Luo S, Ji H M, Gao F, Yang X G, Liang P, Zhao L J and Yang T 2013 Chin. Phys. Lett. 30 068101
|
[16] |
Yang G Q, Zhang S Z, Xu B, Chen Y H and Wang Z G 2017 Chin. Phys. B 26 068103
|
[17] |
Tamang S, Lincheneau C, Hermans Y, Jeong S and Reiss P 2016 Chem. Mater. 28 2491
|
[18] |
Battaglia D and Peng X 2002 Nano Lett. 2 1027
|
[19] |
Byun H J, Song W S and Yang H 2011 Nanotechnology 22 235605
|
[20] |
Ramasamy P, Kim N, Kang Y S, Ramirez O and Lee J S 2017 Chem. Mater. 29 6893
|
[21] |
Buffard A, Dreyfuss S, Nadal B, Heuclin H, Xu X, Patriarche G, Mézailles N and Dubertret B 2016 Chem. Mater. 28 5925
|
[22] |
Li Y, Hou X, Dai X, Yao Z, Lv L, Jin Y and Peng X 2019 J. Am. Chem. Soc. 141 6448
|
[23] |
Lim J, Park M, Bae W K, Lee D, Lee S, Lee C and Char K 2013 ACS Nano 7 9019
|
[24] |
Ramasamy P, Ko K J, Kang J W and Lee J S 2018 Chem. Mater. 30 3643
|
[25] |
Kim H Y, Park Y J, Kim J, Han C J, Lee J, Kim Y, Greco T, Ippen C, Wedel A, Ju B K and Oh M S 2016 Adv. Funct. Mater. 26 3454
|
[26] |
Cheng T, Wang Z, Jin S, Wang F, Bai Y, Feng H, You B, Li Y, Hayat T and Tan Z A 2017 Adv. Opt. Mater. 5 1700035
|
[27] |
Yang X, Zhao D, Leck K S, Tan S T, Tang Y X, Zhao J, Demir H V and Sun X W 2012 Adv. Mater. 24 4180
|
[28] |
Yang X, Divayana Y, Zhao D, Leck K S, Lu F, Tan S T, Abiyasa A P, Zhao Y, Demir H V and Sun X W 2012 Appl. Phys. Lett. 101 233110
|
[29] |
Zhang H, Hu N, Zeng Z, Lin Q, Zhang F, Tang A, Jia Y, Li L S, Shen H, Teng F and Du Z 2019 Adv. Opt. Mater. 7 1801602
|
[30] |
Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J, Holloway P H and Qian L 2015 Nat. Photon. 9 259
|
[31] |
Ho M D, Kim D, Kim N, Cho S M and Chae H 2013 ACS Appl. Mater. Interfaces 5 12369
|
[32] |
Jo J H, Kim J H, Lee K H, Han C Y, Jang E P, Do Y R and Yang H 2016 Opt. Lett. 41 3984
|
[33] |
Van Dijken A, Meulenkamp E A, Vanmaekelbergh D and Meijerink A 2000 J. Phys. Chem. B 104 1715
|
[34] |
Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R and Yang H 2014 Chem. Mater. 27 197
|
[35] |
Cao F, Wang S, Wang F, Wu Q, Zhao D and Yang X 2018 Chem. Mater. 30 8002
|
[36] |
Small C E, Tsang S W, Kido J, So S K and So F 2012 Adv. Funct. Mater. 22 3261
|
[37] |
Kirkwood N, Singh B and Mulvaney P 2016 Adv. Mater. Interfaces 3 1600868
|
[38] |
Yuan G, Gomez D E, Kirkwood N, Boldt K and Mulvaney P 2018 ACS Nano 12 3397
|
[39] |
Kim Y, Ippen C, Fischer B, Lange A and Wedel A 2015 J. Soc. Inf. Disp. 23 377
|
[40] |
Kim D, Fu Y, Kim S, Lee W, Lee K H, Chung H K, Lee H J, Yang H and Chae H 2017 ACS Nano 11 1982
|
[41] |
Wu H, Huang F, Peng J and Cao Y 2005 Org. Electron. 6 118
|
[42] |
Wang H C, Zhang H, Chen H Y, Yeh H C, Tseng M R, Chung R J, Chen S and Liu R S 2017 Small 13 1603962
|
[43] |
Hahm D, Chang J H, Jeong B G, Park P, Kim J, Lee S, Choi J, Kim W D, Rhee S, Lim J, Lee D C, Lee C, Char K and Bae W K 2019 Chem. Mater. 31 3476
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|