Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 118103    DOI: 10.1088/1674-1056/ab4cdb
Special Issue: TOPICAL REVIEW — Quantum dot displays
TOPICAL REVIEW—Quantum dot displays Prev   Next  

InP quantum dots-based electroluminescent devices

Qianqian Wu(吴倩倩)1,2, Fan Cao(曹璠)2, Lingmei Kong(孔令媚)1,2, Xuyong Yang(杨绪勇)2
1 School of Material Science and Engineering, Shanghai University, Shanghai 200072, China;
2 Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China
Abstract  Indium phosphide (InP) quantum dots (QDs) have shown great potential to replace the widely applied toxic cadmium-containing and lead perovskite QDs due to their similar emission wavelength range and emission peak width but without intrinsic toxicity. Recently, electrically driven red and green InP-based quantum-dot light-emitting diodes (QLEDs) have achieved great progress in external quantum efficiency (EQE), reaching up to 12.2% and 6.3%, respectively. Despite the relatively poor device performance comparing with cadmium selenide (CdSe)-and perovskite-based QLEDs, these encouraging facts with unique environmental friendliness and solution-processability foreshadow the enormous potential of InP-based QLEDs for energy-efficient, high-color-quality thin-film display and solid-state lighting applications. In this article, recent advances in the research of the InP-based QLEDs have been discussed, with the main focus on device structure selection and interface research, as well as our outlook for on-going strategies of high-efficiency InP-based QLEDs.
Keywords:  indium phosphide      quantum dots      light-emitting diodes      external quantum efficiency  
Received:  20 August 2019      Revised:  10 September 2019      Accepted manuscript online: 
PACS:  81.07.Ta (Quantum dots)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51675322, 61605109, and 61735004), the National Key Research and Development Program of China (Grant No. 2016YFB0401702), Shanghai Science and Technology Committee, China (Grant No. 19010500600), Shanghai Rising-Star Program, China (Grant No. 17QA1401600), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China.
Corresponding Authors:  Xuyong Yang     E-mail:  yangxy@shu.edu.cn

Cite this article: 

Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇) InP quantum dots-based electroluminescent devices 2019 Chin. Phys. B 28 118103

[34] Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R and Yang H 2014 Chem. Mater. 27 197
[1] Cho K S, Lee E K, Joo W J, Jang E, Kim T H, Lee S J, Kwon S J, Han J Y, Kim B K, Choi B L and Kim J M 2009 Nat. Photon. 3 341
[35] Cao F, Wang S, Wang F, Wu Q, Zhao D and Yang X 2018 Chem. Mater. 30 8002
[2] Wang C, Shim M and Guyot-Sionnest P 2001 Science 291 2390
[36] Small C E, Tsang S W, Kido J, So S K and So F 2012 Adv. Funct. Mater. 22 3261
[3] Qian L, Zheng Y, Xue J and Holloway P H 2011 Nat. Photon. 5 543
[37] Kirkwood N, Singh B and Mulvaney P 2016 Adv. Mater. Interfaces 3 1600868
[4] Shirasaki Y, Supran G J, Bawendi M G and Bulović V 2013 Nat. Photon. 7 13
[38] Yuan G, Gomez D E, Kirkwood N, Boldt K and Mulvaney P 2018 ACS Nano 12 3397
[5] Mashford B S, Stevenson M, Popovic Z, Hamilton C, Zhou Z, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S and Kazlas P T 2013 Nat. Photon. 7 407
[39] Kim Y, Ippen C, Fischer B, Lange A and Wedel A 2015 J. Soc. Inf. Disp. 23 377
[6] Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J and Peng X 2014 Nature 515 96
[40] Kim D, Fu Y, Kim S, Lee W, Lee K H, Chung H K, Lee H J, Yang H and Chae H 2017 ACS Nano 11 1982
[7] Shen H, Gao Q, Zhang Y, Lin Y, Lin Q, Li Z, Chen L, Zeng Z, Li X, Jia Y, Wang S, Du Z, Li L S and Zhang Z 2019 Nat. Photon. 13 192
[41] Wu H, Huang F, Peng J and Cao Y 2005 Org. Electron. 6 118
[8] Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q and Wei Z 2018 Nature 562 245
[42] Wang H C, Zhang H, Chen H Y, Yeh H C, Tseng M R, Chung R J, Chen S and Liu R S 2017 Small 13 1603962
[9] Walters G, Wei M, Voznyy O, Quintero-Bermudez R, Kiani A, Smilgies D M, Munir R, Amassian A, Hoogl S and Sargent E 2018 Nat. Commun. 9 4214
[43] Hahm D, Chang J H, Jeong B G, Park P, Kim J, Lee S, Choi J, Kim W D, Rhee S, Lim J, Lee D C, Lee C, Char K and Bae W K 2019 Chem. Mater. 31 3476
[10] Supran G J, Shirasaki Y, Song, K W, Caruge J M, Kazlas P T, Coe-Sullivan S, Andrew T L, Bawendi M G and Bulović V 2013 MRS Bull. 38 703
[11] Zheng J J, Wang Y R, Yu K H, Xu X X, Sheng X X, Hu E T and Wei W 2018 Acta Phys. Sin. 67 118502(in Chinese)
[12] Anc M J, Pickett N L, Gresty N C, Harris J A and Mishra K C 2013 ECS J. Solid State Sci. Technol. 2 R3071
[13] Derfus A M, Chan W C and Bhatia S N 2004 Nano Lett. 4 11
[14] Hardman R 2006 Environ. Health Perspect. 114 165
[15] Luo S, Ji H M, Gao F, Yang X G, Liang P, Zhao L J and Yang T 2013 Chin. Phys. Lett. 30 068101
[16] Yang G Q, Zhang S Z, Xu B, Chen Y H and Wang Z G 2017 Chin. Phys. B 26 068103
[17] Tamang S, Lincheneau C, Hermans Y, Jeong S and Reiss P 2016 Chem. Mater. 28 2491
[18] Battaglia D and Peng X 2002 Nano Lett. 2 1027
[19] Byun H J, Song W S and Yang H 2011 Nanotechnology 22 235605
[20] Ramasamy P, Kim N, Kang Y S, Ramirez O and Lee J S 2017 Chem. Mater. 29 6893
[21] Buffard A, Dreyfuss S, Nadal B, Heuclin H, Xu X, Patriarche G, Mézailles N and Dubertret B 2016 Chem. Mater. 28 5925
[22] Li Y, Hou X, Dai X, Yao Z, Lv L, Jin Y and Peng X 2019 J. Am. Chem. Soc. 141 6448
[23] Lim J, Park M, Bae W K, Lee D, Lee S, Lee C and Char K 2013 ACS Nano 7 9019
[24] Ramasamy P, Ko K J, Kang J W and Lee J S 2018 Chem. Mater. 30 3643
[25] Kim H Y, Park Y J, Kim J, Han C J, Lee J, Kim Y, Greco T, Ippen C, Wedel A, Ju B K and Oh M S 2016 Adv. Funct. Mater. 26 3454
[26] Cheng T, Wang Z, Jin S, Wang F, Bai Y, Feng H, You B, Li Y, Hayat T and Tan Z A 2017 Adv. Opt. Mater. 5 1700035
[27] Yang X, Zhao D, Leck K S, Tan S T, Tang Y X, Zhao J, Demir H V and Sun X W 2012 Adv. Mater. 24 4180
[28] Yang X, Divayana Y, Zhao D, Leck K S, Lu F, Tan S T, Abiyasa A P, Zhao Y, Demir H V and Sun X W 2012 Appl. Phys. Lett. 101 233110
[29] Zhang H, Hu N, Zeng Z, Lin Q, Zhang F, Tang A, Jia Y, Li L S, Shen H, Teng F and Du Z 2019 Adv. Opt. Mater. 7 1801602
[30] Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J, Holloway P H and Qian L 2015 Nat. Photon. 9 259
[31] Ho M D, Kim D, Kim N, Cho S M and Chae H 2013 ACS Appl. Mater. Interfaces 5 12369
[32] Jo J H, Kim J H, Lee K H, Han C Y, Jang E P, Do Y R and Yang H 2016 Opt. Lett. 41 3984
[33] Van Dijken A, Meulenkamp E A, Vanmaekelbergh D and Meijerink A 2000 J. Phys. Chem. B 104 1715
[34] Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R and Yang H 2014 Chem. Mater. 27 197
[35] Cao F, Wang S, Wang F, Wu Q, Zhao D and Yang X 2018 Chem. Mater. 30 8002
[36] Small C E, Tsang S W, Kido J, So S K and So F 2012 Adv. Funct. Mater. 22 3261
[37] Kirkwood N, Singh B and Mulvaney P 2016 Adv. Mater. Interfaces 3 1600868
[38] Yuan G, Gomez D E, Kirkwood N, Boldt K and Mulvaney P 2018 ACS Nano 12 3397
[39] Kim Y, Ippen C, Fischer B, Lange A and Wedel A 2015 J. Soc. Inf. Disp. 23 377
[40] Kim D, Fu Y, Kim S, Lee W, Lee K H, Chung H K, Lee H J, Yang H and Chae H 2017 ACS Nano 11 1982
[41] Wu H, Huang F, Peng J and Cao Y 2005 Org. Electron. 6 118
[42] Wang H C, Zhang H, Chen H Y, Yeh H C, Tseng M R, Chung R J, Chen S and Liu R S 2017 Small 13 1603962
[43] Hahm D, Chang J H, Jeong B G, Park P, Kim J, Lee S, Choi J, Kim W D, Rhee S, Lim J, Lee D C, Lee C, Char K and Bae W K 2019 Chem. Mater. 31 3476
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[11] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[12] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[13] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[14] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[15] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
No Suggested Reading articles found!