Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098105    DOI: 10.1088/1674-1056/ac7211
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method

Kang-Wei Wang(王康伟)1,2, Meng-Wu Wu(吴孟武)1,2,†, Bing-Hui Tian(田冰辉)1,2, and Shou-Mei Xiong(熊守美)3
1 School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China;
2 Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China;
3 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract  A numerical model is developed by coupling the cellular automaton (CA) method and the lattice Boltzmann method (LBM) to simulate the dendritic growth of Al-Cu alloy in both two and three dimensions. An improved decentered square algorithm is proposed to overcome the artificial anisotropy induced by the CA cells and to realize simulation of dendritic growth with arbitrary orientations. Based on the established CA-LBM model, effects of forced convection and gravity-driven natural convection on dendritic growth are studied. The simulation results show that the blocking effect of dendrites on melt flow is advanced with a larger number of seeds. The competitive growth of the converging columnar dendrites is determined by the interaction between heat flow and forced convection. Gravity-driven natural convection leads to highly asymmetric growth of equiaxed dendrites. With sinking downwards of the heavy solute, chimney-like or mushroom-like solute plumes are formed in the melt in front of the columnar dendrites when they grow along the gravitational direction. More details on dendritic growth of Al-Cu alloy under convection are revealed by 3D simulations.
Keywords:  simulation      cellular automaton      dendritic growth      melt convection  
Received:  28 January 2022      Revised:  20 April 2022      Accepted manuscript online:  23 May 2022
PACS:  81.30.Fb (Solidification)  
  47.11.-j (Computational methods in fluid dynamics)  
  68.08.De (Liquid-solid interface structure: measurements and simulations)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51805389), the Key R&D Program of Hubei Province, China (Grant No. 2021BAA048), the 111 Project (Grant No. B17034) and the fund of Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology (Grant No. XDQCKF2021011).
Corresponding Authors:  Meng-Wu Wu     E-mail:  wumw@whut.edu.cn

Cite this article: 

Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美) Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method 2022 Chin. Phys. B 31 098105

[1] Tang Y, Wu Y, Zhang Y, Dai Y B, Dong Q, Han Y F, Zhu G L, Zhang J, Fu Y N and Sun B D 2021 Acta Mater. 212 116861
[2] Ren N, Li J, Panwisawas C, Xia M X, Dong H B and Li J G 2021 Acta Mater. 206 116620
[3] Wang T, Hachani L, Fautrelle Y, Delannoy Y, Wang E, Wang X D and Budenkova O 2020 Int. J. Heat Mass Transfer 151 119414
[4] Qin L, Shen J, Li Q D and Shang Z 2017 J. Cryst. Growth 466 45
[5] Hachani L, Zaidat K and Fautrelle Y 2015 Int. J. Heat Mass Transfer 85 438
[6] Peng P, Li S Y, Zheng W C, Lu L and Zhou S D 2021 Trans. Nonferrous Met. Soc. China 31 3096
[7] Ngomesse F, Reinhart G, Soltani H, Zimmermann G, Browne D J, Sillekens W and Nguyen-Thi H 2021 Acta Mater. 221 117401
[8] Shevchenko N, Boden S, Gerbeth G and Eckert S 2013 Metall. Mater. Trans. A 44 3797
[9] Shevchenko N, Roshchupkina O, Sokolova O and Eckert S 2015 J. Cryst. Growth 417 1
[10] Akamatsu S and Henri N T 2016 Acta Mater. 108 325
[11] Henri N T, Luc S, Ragnvald H M, Lars A, Bernard B, Michel S and Guillaume R 2012 C. R. Phys. 13 237
[12] Clarke A J, Tourret D, Song Y, Imhoff S D, Gibbs P J, Gibbs J W, Fezzaa K and Karma A 2017 Acta Mater. 129 203
[13] Yan X W, Xu Q Y and Liu B C 2017 J. Cryst. Growth 479 22
[14] Gu C, Ridgeway C D, Moodiispaw M P and Luo A A 2020 J. Mater. Process. Technol. 286 116829
[15] Xiong L D, Zhu G L, Mi G Y, Wang C M and Jiang P 2021 J. Alloy. Compd. 858 157669
[16] Takaki T, Sato R, Rojas R, Ohno M and Shibuta Y 2018 Comput. Mater. Sci. 147 124
[17] Ratkai L, Pusztai T A and Granasy L 2019 npj Comput. Mater. 5 1
[18] Zhang Q Y, Sun D K, Zhang S H, Wang H and Zhu M F 2020 Chin. Phys. B 29 078104
[19] Rodgers T M, Moser D, Abdeljawad F, Underwood Jackson O D, Carroll J D, Jared B H, Bolintineanu D S, Mitchell J A and Madison J D 2021 Addit. Manufact. 41 101953
[20] Zhang Z D, Cao Y T, Sun D K, Xing H, Wang J C and Ni Z H 2020 Chin. Phys. B 29 028103
[21] Song Y H, Wang M T, Ni J, Jin J F and Zong Y P 2020 Chin. Phys. B 29 128201
[22] Song W, Zhang J M, Wang S X, Wang B and Han L L 2016 J. Cent. South Univ. 23 2156
[23] Fang H, Xue H, Tang Q Y, Zhang Q Y, Pan S Y and Zhu M F 2019 Acta Phys. Sin. 68 048102 (in Chinese)
[24] Zhu M F, Dai T, Lee S Y and Hong C P 2008 Comput. Math. Appl. 55 1620
[25] Sun D K, Chai Z H, Li Q and Lin G 2018 Chin. Phys. B 27 088105
[26] Yin H, Felicelli S D and Wang L 2011 Acta Mater. 59 3124
[27] Liu L, Pian S, Zhang Z, Bao Y, Li R and Chen H 2018 Comput. Mater. Sci. 146 9
[28] Ma R, Dong Z B and Wei Y H 2009 Cryst. Res. Technol. 44 1197
[29] Rolchigo M R, Mendoza M Y, Samimi P, Brice D A, Martin B, Collins P C and Lesar R 2017 Metall. Mater. Trans. 48 3606
[30] Daud A and Bilal M 2014 Appl. Math. Comput. 233 72
[31] Chai Z H and Shi B C 2020 Phys. Rev. E 102 023306
[32] Qian Y H, Humieres D D and Lallemand P 1992 Europhys. Lett. 17 479
[33] Guo Z L, Zheng C G and Shi B C 2002 Phys. Rev. E 65 046308
[34] Shi B C, Deng B and Chen X W 2007 Comput. Math. Appl. 55 1568
[35] Zhang L Q, Yang S L, Zeng Z and Chew J W 2018 Comput. Fluids 176 153
[36] Riheb M, Hassane N, Hacen D, Sihem H and Zohir Y 2020 Int. Commun. Heat Mass Transfer 119 104992
[37] He S Y, Habte B T and Jiang F M 2017 Int. Commun. Heat Mass Transfer 82 1
[38] Mei R W, Shy Y W, Yu D Z and Luo L S 2000 J. Comput. Phys. 161 680
[39] Leila J, Nor A C S, Alireza F and Mahmoud P H A 2016 Int. Commun. Heat Mass Transfer 78 1
[40] Guo Z L, Zheng C G and Shi B C 2002 Chin. Phys. 11 366
[41] Paul L, Pierre B J and Alain N 1991 Physica D 47 233
[42] Wu M W and Xiong S M 2012 Trans. Nonferrous Met. Soc. China 22 2212
[43] Gandin C A and Rappaz M 1994 Acta Mater. 42 2233
[44] Wang W, Lee P H and Mclean M 2003 Acta Mater. 51 2971
[45] Zhu M Y, Wang W L, Ji C and Luo S 2018 Metall. Mater. Trans. 49 200
[46] Zhu M Y, Gao X H, Meng X N, Cui L, Zhang K and Meng Y F 2020 Mater. Res. Express 7 056505
[47] Zhang Q Y, Sun D K, Pan S Y and Zhu M F 2020 Int. J. Heat Mass Transfer 146 118838
[48] Sun D K, Zhang Q Y, Cao W S and Zhu M F 2015 Chin. Phys. Lett. 32 68103
[49] Walton D and Chalmers B 1959 Trans. Metall. Soc. AIME 215 447
[50] Jaehoon L, Ohno M, Shibuta Y and Takaki T 2021 J. Cryst. Growth 558 126014
[51] Pavan L V, Wang F, Michael S and Britta N 2021 Comput. Mater. Sci. 186 109964
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[9] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[10] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[11] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[12] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[13] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[14] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[15] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
No Suggested Reading articles found!