INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor |
Hao Wang(王昊)1, Wei-Hua Han(韩伟华)1, Xiao-Song Zhao(赵晓松)1, Wang Zhang(张望)1, Qi-Feng Lyu(吕奇峰)1, Liu-Hong Ma(马刘红)1,2, Fu-Hua Yang(杨富华)1,2 |
1 Engineering Research Center for Semiconductor Integration Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 State Key Laboratory for Superlattices and Microstructures, Beijing 100083, China |
|
|
Abstract We study electric-field-dependent charge delocalization from dopant atoms in a silicon junctionless nanowire transistor by low-temperature electron transport measurement. The Arrhenius plot of the temperature-dependent conductance demonstrates the transport behaviors of variable-range hopping (below 30 K) and nearest-neighbor hopping (above 30 K). The activation energy for the charge delocalization gradually decreases due to the confinement potential of the conduction channel decreasing from the threshold voltage to the flatband voltage. With the increase of the source-drain bias, the activation energy increases in a temperature range from 30 K to 100 K at a fixed gate voltage, but decreases above the temperature of 100 K.
|
Received: 31 March 2016
Revised: 31 May 2016
Accepted manuscript online:
|
PACS:
|
81.07.Ta
|
(Quantum dots)
|
|
94.20.Ss
|
(Electric fields; current system)
|
|
81.07.Gf
|
(Nanowires)
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project supported partly by the National Key R & D Program of China (Grant No. 2016YFA02005003) and the National Natural Science Foundation of China (Grant Nos. 61376096 and 61327813). |
Corresponding Authors:
Wei-Hua Han, Fu-Hua Yang
E-mail: weihua@semi.ac.cn;fhyang@semi.ac.cn
|
Cite this article:
Hao Wang(王昊), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Wang Zhang(张望), Qi-Feng Lyu(吕奇峰), Liu-Hong Ma(马刘红), Fu-Hua Yang(杨富华) Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor 2016 Chin. Phys. B 25 108102
|
[1] |
Ferain I, Colinge C A and Colinge J P 2011 Nature 479 310
|
[2] |
Natarajan S, Agostinelli M, Akbar S, et al. 2014 Electron Devices Meeting (IEDM) 3.7.1
|
[3] |
Lavieville R, Triozon F, Barraud S, Corna A, Jehl X, Sanquer M, Li J, Abisset A, Duchemin I and Niquet Y M 2015 Nano Lett. 15 2958
|
[4] |
Tabe M, Moraru D, Ligowski M, Anwar M, Jablonski R, Ono Y and Mizuno T 2010 Phys. Rev. Lett. 105 016803
|
[5] |
Sellier H, Lansbergen G P, Caro J, Rogge S, Collaert N, Ferain I, Jurczak M and Biesemans S 2006 Phys. Rev. Lett. 97 206805
|
[6] |
Pierre M, Wacquez R, Jehl X, Sanquer M, Vinet M and Cueto O 2010 Nat. Nanotechnol. 5 133
|
[7] |
Rezapour A and Rezapour P 2015 J. Semicond. 36 093002
|
[8] |
Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G and Simmons M Y 2012 Nat. Nanotech- nol. 7 242
|
[9] |
Ligowski M, Moraru D, Anwar M, Mizuno T, Jablonski R and Tabe M 2008 Appl. Phys. Lett. 93 142101
|
[10] |
Hamid E, Moraru D, Kuzuya Y, Mizuno T, Anh L T, Mizuta H and Tabe M 2013 Phys. Rev. B 87 085420
|
[11] |
Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
|
[12] |
Colinge J P, Kranti A, Yan R, Lee C W, Ferain I, Yu R, Akhavan N D and Razavi P 2011 Solid State Electron. 65 33
|
[13] |
Park J T, Kim J Y, Lee C W and Colinge J P 2010 Appl. Phys. Lett. 97 172101
|
[14] |
Yi K S, Trivedi K, Floresca H C, Yuk H, Hu W and Kim M J 2011 Nano Lett. 115 5465
|
[15] |
Akhavan N D, Afzalian A, Lee C W, Yan R, Ferain I, Razavi P, Yu R, Fagas G and Colinge J P 2010 J. Appl. Phys. 108 034510
|
[16] |
Prati E, Hori M, Guagliardo F, Ferrari G and Shinada T 2012 Nat. Nan-otechnol. 7 443
|
[17] |
Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J and Wang X 2013 Nat. Commun. 4 2642
|
[18] |
Turk M E, Choi J H, Oh S J, Fafarman A T, Diroll B T, Murray C B, Kagan C R and Kikkawa J M 2014 Nano Lett. 14 5948
|
[19] |
Roche B, Dupont-Ferrier E, Voisin B, Cobian M, Jehl X and Wacquez R 2012 Phys. Rev. Lett. 108 206812
|
[20] |
Wang H, Han W, Li X, Zhang Y and Yang F 2014 J. Appl. Phys. 116 124505
|
[21] |
Akhavan N D, Afzalian A, Lee C W, Yan R, Ferain I, Razavi P, Fagas G and Colinge J P 2010 IEEE T. Electron Dev. 57 1102
|
[22] |
Akhavan N D, Ferain I, Yu R, Razavi P and Colinge J P 2012 Solid- State Electron. 70 92
|
[23] |
Li X, Han W, Wang H, Ma L, Zhang Y, Du Y and Yang F 2013 Appl. Phys. Lett. 102 223507
|
[24] |
Mott N F 1987 Conduction in Non-Crystalline Materials (New York: Clarendon Press)
|
[25] |
Altermatt P P, Schenk A and Heiser G 2006 J. Appl. Phys. 100 113714
|
[26] |
Thomas G A, Capizzi M, DeRosa F, Bhatt R N and Rice T M 1981 Phys. Rev. B 10 5472
|
[27] |
Ma L, Han W, Wang H, Hong W, Lyu Q, Yang X and Yang F 2015 J. Appl. Phys. 117 034505
|
[28] |
Davis E A and Mott N F 1970 Philos. Mag. 22 0903
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|