Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108102    DOI: 10.1088/1674-1056/25/10/108102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor

Hao Wang(王昊)1, Wei-Hua Han(韩伟华)1, Xiao-Song Zhao(赵晓松)1, Wang Zhang(张望)1, Qi-Feng Lyu(吕奇峰)1, Liu-Hong Ma(马刘红)1,2, Fu-Hua Yang(杨富华)1,2
1 Engineering Research Center for Semiconductor Integration Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 State Key Laboratory for Superlattices and Microstructures, Beijing 100083, China
Abstract  

We study electric-field-dependent charge delocalization from dopant atoms in a silicon junctionless nanowire transistor by low-temperature electron transport measurement. The Arrhenius plot of the temperature-dependent conductance demonstrates the transport behaviors of variable-range hopping (below 30 K) and nearest-neighbor hopping (above 30 K). The activation energy for the charge delocalization gradually decreases due to the confinement potential of the conduction channel decreasing from the threshold voltage to the flatband voltage. With the increase of the source-drain bias, the activation energy increases in a temperature range from 30 K to 100 K at a fixed gate voltage, but decreases above the temperature of 100 K.

Keywords:  quantum dots      electric field      junctionless nanowire transistor      current oscillations  
Received:  31 March 2016      Revised:  31 May 2016      Accepted manuscript online: 
PACS:  81.07.Ta (Quantum dots)  
  94.20.Ss (Electric fields; current system)  
  81.07.Gf (Nanowires)  
  85.30.Tv (Field effect devices)  
Fund: 

Project supported partly by the National Key R & D Program of China (Grant No. 2016YFA02005003) and the National Natural Science Foundation of China (Grant Nos. 61376096 and 61327813).

Corresponding Authors:  Wei-Hua Han, Fu-Hua Yang     E-mail:  weihua@semi.ac.cn;fhyang@semi.ac.cn

Cite this article: 

Hao Wang(王昊), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Wang Zhang(张望), Qi-Feng Lyu(吕奇峰), Liu-Hong Ma(马刘红), Fu-Hua Yang(杨富华) Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor 2016 Chin. Phys. B 25 108102

[1] Ferain I, Colinge C A and Colinge J P 2011 Nature 479 310
[2] Natarajan S, Agostinelli M, Akbar S, et al. 2014 Electron Devices Meeting (IEDM) 3.7.1
[3] Lavieville R, Triozon F, Barraud S, Corna A, Jehl X, Sanquer M, Li J, Abisset A, Duchemin I and Niquet Y M 2015 Nano Lett. 15 2958
[4] Tabe M, Moraru D, Ligowski M, Anwar M, Jablonski R, Ono Y and Mizuno T 2010 Phys. Rev. Lett. 105 016803
[5] Sellier H, Lansbergen G P, Caro J, Rogge S, Collaert N, Ferain I, Jurczak M and Biesemans S 2006 Phys. Rev. Lett. 97 206805
[6] Pierre M, Wacquez R, Jehl X, Sanquer M, Vinet M and Cueto O 2010 Nat. Nanotechnol. 5 133
[7] Rezapour A and Rezapour P 2015 J. Semicond. 36 093002
[8] Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G and Simmons M Y 2012 Nat. Nanotech- nol. 7 242
[9] Ligowski M, Moraru D, Anwar M, Mizuno T, Jablonski R and Tabe M 2008 Appl. Phys. Lett. 93 142101
[10] Hamid E, Moraru D, Kuzuya Y, Mizuno T, Anh L T, Mizuta H and Tabe M 2013 Phys. Rev. B 87 085420
[11] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
[12] Colinge J P, Kranti A, Yan R, Lee C W, Ferain I, Yu R, Akhavan N D and Razavi P 2011 Solid State Electron. 65 33
[13] Park J T, Kim J Y, Lee C W and Colinge J P 2010 Appl. Phys. Lett. 97 172101
[14] Yi K S, Trivedi K, Floresca H C, Yuk H, Hu W and Kim M J 2011 Nano Lett. 115 5465
[15] Akhavan N D, Afzalian A, Lee C W, Yan R, Ferain I, Razavi P, Yu R, Fagas G and Colinge J P 2010 J. Appl. Phys. 108 034510
[16] Prati E, Hori M, Guagliardo F, Ferrari G and Shinada T 2012 Nat. Nan-otechnol. 7 443
[17] Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J and Wang X 2013 Nat. Commun. 4 2642
[18] Turk M E, Choi J H, Oh S J, Fafarman A T, Diroll B T, Murray C B, Kagan C R and Kikkawa J M 2014 Nano Lett. 14 5948
[19] Roche B, Dupont-Ferrier E, Voisin B, Cobian M, Jehl X and Wacquez R 2012 Phys. Rev. Lett. 108 206812
[20] Wang H, Han W, Li X, Zhang Y and Yang F 2014 J. Appl. Phys. 116 124505
[21] Akhavan N D, Afzalian A, Lee C W, Yan R, Ferain I, Razavi P, Fagas G and Colinge J P 2010 IEEE T. Electron Dev. 57 1102
[22] Akhavan N D, Ferain I, Yu R, Razavi P and Colinge J P 2012 Solid- State Electron. 70 92
[23] Li X, Han W, Wang H, Ma L, Zhang Y, Du Y and Yang F 2013 Appl. Phys. Lett. 102 223507
[24] Mott N F 1987 Conduction in Non-Crystalline Materials (New York: Clarendon Press)
[25] Altermatt P P, Schenk A and Heiser G 2006 J. Appl. Phys. 100 113714
[26] Thomas G A, Capizzi M, DeRosa F, Bhatt R N and Rice T M 1981 Phys. Rev. B 10 5472
[27] Ma L, Han W, Wang H, Hong W, Lyu Q, Yang X and Yang F 2015 J. Appl. Phys. 117 034505
[28] Davis E A and Mott N F 1970 Philos. Mag. 22 0903
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[10] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[11] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[12] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!