CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Quantum frequency down-conversion of single photons at 1552 nm from single InAs quantum dot |
Ben Ma(马奔)1,2,3, Si-Hang Wei(魏思航)1,2,3, Ze-Sheng Chen(陈泽升)1,2,3, Xiang-Jun Shang(尚向军)1,2,3, Hai-Qiao Ni(倪海桥)1,2,3, Zhi-Chuan Niu(牛智川)1,2,3 |
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101418, China;
3 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Near-infrared single photon sources in telecommunication bands, especially at 1550 nm, are required for long-distance quantum communication. Here a down-conversion quantum interface is implemented, where the single photons emitted from single InAs quantum dot at 864 nm is down converted to 1552 nm by using a fiber-coupled periodically poled lithium niobate (PPLN) waveguide and a 1.95 μm pump laser, and the frequency conversion efficiency is~40%. The single-photon purity of quantum dot emission is preserved during the down-conversion process, i.e., g(2)(0), only 0.22 at 1552 nm. This present technique advances the Ⅲ-V semiconductor quantum dots as a promising platform for long-distance quantum communication.
|
Received: 18 May 2018
Revised: 08 June 2018
Accepted manuscript online:
|
PACS:
|
78.67.Hc
|
(Quantum dots)
|
|
81.07.Ta
|
(Quantum dots)
|
|
73.21.La
|
(Quantum dots)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
Fund: Project supported by the National Key Technologies R&D Program of China (Grant No. 2018YFA0306101), the Scientific Instrument Developing Project of Chinese Academy of Sciences (Grant No. YJKYYQ20170032), and the National Natural Science Foundation of China (Grant No. 61505196). |
Corresponding Authors:
Zhi-Chuan Niu
E-mail: zcniu@semi.ac.cn
|
Cite this article:
Ben Ma(马奔), Si-Hang Wei(魏思航), Ze-Sheng Chen(陈泽升), Xiang-Jun Shang(尚向军), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) Quantum frequency down-conversion of single photons at 1552 nm from single InAs quantum dot 2018 Chin. Phys. B 27 097802
|
[1] |
Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
|
[2] |
Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
|
[3] |
Kimble H J 2008 Nature 453 1023
|
[4] |
Intallura P M, Ward M B, Karimov O Z, Yuan Z L, See P and Shields A J 2007 Appl. Phys. Lett. 91 161103
|
[5] |
Buckley S, Rivoire K and Vučković J 2012 Rep. Prog. Phys. 75 126503
|
[6] |
Chen Z S, Ma B, Shang X J, He Y, Zhang L H, Ni H Q, Wang J L and Niu Z C 2016 Nanoscale Res. Lett. 11 382
|
[7] |
Frederick S, Dalacu D, Poitras D, Aers G C, Poole P J, Lefebvre J, Chithrani D and Williams R L 2005 Microelectron. J. 36 197
|
[8] |
Kumar P 1990 Opt. Lett. 15 1476
|
[9] |
De Greve K, Yu L, McMahon P L, Pelc J S, Natarajan C M, Kim N Y, Abe E, Maier S, Schneider C, Kamp M, Höfling S, Hadfield R H, Forchel A, Fejer M M and Yamamoto Y 2012 Nature 491 421
|
[10] |
Tanzilli S, Tittel W, Halder M, Alibart O, Baldi P, Gisin N and Zbinden H 2005 Nature 437 116
|
[11] |
Langrock C, Diamanti E, Roussev R V, Yamamoto Y, Fejer M M and Takesue H 2005 Opt. Lett. 30 1725
|
[12] |
Ikuta R, Kusaka Y, Kitano T, Kato H, Yamamoto T, Koashi M and Imoto N 2011 Nat. Commun. 2 1544
|
[13] |
Pelc J S, Yu L, De Greve K, McMahon P L, Natarajan C M, Esfandyarpour V, Maier S, Schneider C, Kamp M, Höfling S, Hadfield R H, Forchel A, Yamamoto Y and Fejer M M 2012 Opt. Express 20 27510
|
[14] |
Zaske S 2013 Quantum Frequency Down-Conversion of Single Photons in Nonlinear Optical Waveguides (Ph. D. dissertation) (Saarbrücken:Universität des Saarlandes)
|
[15] |
Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F and Guo G C 2015 Nat. Commun. 6 8652
|
[16] |
Schlereth T W, Schneider C, Höfling S and Forchel A 2008 Nanotechnology 19 045601
|
[17] |
Baklenov O, Huffaker D L, Anselm A, Deppe D G and Streetman B G 1997 J. Appl. Phys. 82 6362
|
[18] |
Li M F, Yu Y, He J F, Wang L J, Zhu Y, Shang X J, Ni H Q and Niu Z C 2013 Nanoscale Res. Lett. 8 1
|
[19] |
Shang X J, Xu J X, Ma B, Chen Z S, Wei S H, Li M F, Zha G W, Zhang L C, Yu Y, Ni H Q and Niu Z C 2016 Chin. Phys. B 25 107805
|
[20] |
Yu Y, Shang X J, Li M F, Zha G W, Xu J X, Wang L J, Wang G W, Ni H Q, Dou X M, Sun B Q and Niu Z C 2013 Appl. Phys. Lett. 102 201103
|
[21] |
Gayral B 2001 Ann. Phys. Fr. 26 1
|
[22] |
Giesz V, Gazzano O, Nowak A K, Portalupi S L, Lemaître A, Sagnes I, Lanco L and Senellart P 2013 Appl. Phys. Lett. 103 033113
|
[23] |
Aharonovich I, Castelletto S, Simpson D A, Su C H, Greentree A D and Prawer S 2011 Rep. Prog. Phys. 74 076501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|