Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097802    DOI: 10.1088/1674-1056/27/9/097802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum frequency down-conversion of single photons at 1552 nm from single InAs quantum dot

Ben Ma(马奔)1,2,3, Si-Hang Wei(魏思航)1,2,3, Ze-Sheng Chen(陈泽升)1,2,3, Xiang-Jun Shang(尚向军)1,2,3, Hai-Qiao Ni(倪海桥)1,2,3, Zhi-Chuan Niu(牛智川)1,2,3
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101418, China;
3 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

Near-infrared single photon sources in telecommunication bands, especially at 1550 nm, are required for long-distance quantum communication. Here a down-conversion quantum interface is implemented, where the single photons emitted from single InAs quantum dot at 864 nm is down converted to 1552 nm by using a fiber-coupled periodically poled lithium niobate (PPLN) waveguide and a 1.95 μm pump laser, and the frequency conversion efficiency is~40%. The single-photon purity of quantum dot emission is preserved during the down-conversion process, i.e., g(2)(0), only 0.22 at 1552 nm. This present technique advances the Ⅲ-V semiconductor quantum dots as a promising platform for long-distance quantum communication.

Keywords:  quantum frequency down-conversion      quantum dot      telecommunication band      single photon  
Received:  18 May 2018      Revised:  08 June 2018      Accepted manuscript online: 
PACS:  78.67.Hc (Quantum dots)  
  81.07.Ta (Quantum dots)  
  73.21.La (Quantum dots)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: 

Project supported by the National Key Technologies R&D Program of China (Grant No. 2018YFA0306101), the Scientific Instrument Developing Project of Chinese Academy of Sciences (Grant No. YJKYYQ20170032), and the National Natural Science Foundation of China (Grant No. 61505196).

Corresponding Authors:  Zhi-Chuan Niu     E-mail:  zcniu@semi.ac.cn

Cite this article: 

Ben Ma(马奔), Si-Hang Wei(魏思航), Ze-Sheng Chen(陈泽升), Xiang-Jun Shang(尚向军), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) Quantum frequency down-conversion of single photons at 1552 nm from single InAs quantum dot 2018 Chin. Phys. B 27 097802

[1] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[3] Kimble H J 2008 Nature 453 1023
[4] Intallura P M, Ward M B, Karimov O Z, Yuan Z L, See P and Shields A J 2007 Appl. Phys. Lett. 91 161103
[5] Buckley S, Rivoire K and Vučković J 2012 Rep. Prog. Phys. 75 126503
[6] Chen Z S, Ma B, Shang X J, He Y, Zhang L H, Ni H Q, Wang J L and Niu Z C 2016 Nanoscale Res. Lett. 11 382
[7] Frederick S, Dalacu D, Poitras D, Aers G C, Poole P J, Lefebvre J, Chithrani D and Williams R L 2005 Microelectron. J. 36 197
[8] Kumar P 1990 Opt. Lett. 15 1476
[9] De Greve K, Yu L, McMahon P L, Pelc J S, Natarajan C M, Kim N Y, Abe E, Maier S, Schneider C, Kamp M, Höfling S, Hadfield R H, Forchel A, Fejer M M and Yamamoto Y 2012 Nature 491 421
[10] Tanzilli S, Tittel W, Halder M, Alibart O, Baldi P, Gisin N and Zbinden H 2005 Nature 437 116
[11] Langrock C, Diamanti E, Roussev R V, Yamamoto Y, Fejer M M and Takesue H 2005 Opt. Lett. 30 1725
[12] Ikuta R, Kusaka Y, Kitano T, Kato H, Yamamoto T, Koashi M and Imoto N 2011 Nat. Commun. 2 1544
[13] Pelc J S, Yu L, De Greve K, McMahon P L, Natarajan C M, Esfandyarpour V, Maier S, Schneider C, Kamp M, Höfling S, Hadfield R H, Forchel A, Yamamoto Y and Fejer M M 2012 Opt. Express 20 27510
[14] Zaske S 2013 Quantum Frequency Down-Conversion of Single Photons in Nonlinear Optical Waveguides (Ph. D. dissertation) (Saarbrücken:Universität des Saarlandes)
[15] Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F and Guo G C 2015 Nat. Commun. 6 8652
[16] Schlereth T W, Schneider C, Höfling S and Forchel A 2008 Nanotechnology 19 045601
[17] Baklenov O, Huffaker D L, Anselm A, Deppe D G and Streetman B G 1997 J. Appl. Phys. 82 6362
[18] Li M F, Yu Y, He J F, Wang L J, Zhu Y, Shang X J, Ni H Q and Niu Z C 2013 Nanoscale Res. Lett. 8 1
[19] Shang X J, Xu J X, Ma B, Chen Z S, Wei S H, Li M F, Zha G W, Zhang L C, Yu Y, Ni H Q and Niu Z C 2016 Chin. Phys. B 25 107805
[20] Yu Y, Shang X J, Li M F, Zha G W, Xu J X, Wang L J, Wang G W, Ni H Q, Dou X M, Sun B Q and Niu Z C 2013 Appl. Phys. Lett. 102 201103
[21] Gayral B 2001 Ann. Phys. Fr. 26 1
[22] Giesz V, Gazzano O, Nowak A K, Portalupi S L, Lemaître A, Sagnes I, Lanco L and Senellart P 2013 Appl. Phys. Lett. 103 033113
[23] Aharonovich I, Castelletto S, Simpson D A, Su C H, Greentree A D and Prawer S 2011 Rep. Prog. Phys. 74 076501
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[13] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[14] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!