Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 018106    DOI: 10.1088/1674-1056/abcfa4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition

Yan Wang(王岩)1, Shuai Luo(罗帅)4,5, Haiming Ji(季海铭)4,5, Di Qu(曲迪)1,2,†, and Yidong Huang(黄翊东)3
1 Innovation Center of Advanced Optoelectronic Chip, Institute for Electronics and Information Technology in Tianjin, Tsinghua University, Tianjin 300467, China; 2 Tianjin H-Chip Technology Group Corporation, Tianjin 300467, China; 3 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; 4 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 5 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We demonstrate high-performance broadband tunable external-cavity lasers (ECLs) with the metal-organic chemical vapor deposition (MOCVD) grown InAs/InP quantum dots (QDs) structures. Without cavity facet coatings, the 3-dB spectral bandwidth of the Fabry-Perot (FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm. Combined with the anti-reflection (AR) /high-reflection (HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 kA/cm2. The maximum output power of 6.5 mW was achieved under a 500 mA injection current. All achievements mentioned above were obtained under continuous-wave (CW) mode at room temperature (RT).
Keywords:  InAs/InP quantum dot      external-cavity laser      continuous-wave operation      metal-organic chemical vapor deposition  
Received:  17 September 2020      Revised:  06 November 2020      Accepted manuscript online:  02 December 2020
PACS:  81.07.Ta (Quantum dots)  
  81.16.Dn (Self-assembly)  
  81.05.Ea (III-V semiconductors)  
  78.67.Hc (Quantum dots)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61974141), Tianjin Municipal Science and Technology Bureau, and Science and Technology Innovation Bureau of China-Singapore Tianjin Eco-City.
Corresponding Authors:  Corresponding author. E-mail: qudi@hchiptech.com   

Cite this article: 

Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东) Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition 2021 Chin. Phys. B 30 018106

1 Barwood G P, Gill P and Rowley W R C 1998 Meas. Sci. Techno. 9 1036
2 Grundmann M 2000 Appl. Phys. Lett. 77 4265
3 Lester L F, Stintz A, Li H, Newell T C, Pease E A, Fuchs B A and Malloy K J 1999 IEEE Photon. Technol. Lett. 11 931
4 Chia C K, Chua S J, Dong J R and Teo S L 2007 Appl. Phys. Lett. 90 061101
5 Djie H S, Ooi B S, Fang X M, Wu Y, Fastenau J M, Liu W K and Hopkinson M 2007 Opt. Lett. 32 44
6 Chen P, Gong Q, Cao C F, Li S G, Wang Y, Liu Q B, Yue L, Zhang Y G, Feng S L, Ma C H and Wang H L 2011 Appl. Phys. Lett. 98 121102
7 Li H, Liu G T, Varangis P M, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 IEEE Photon. Technol. Lett. 12 759
8 Varangis P M, Li H, Liu G T, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 Electron. Lett. 36 1544
9 Haggett S, Krakowski M, Montrosset I and Cataluna M A 2014 Opt. Express 22 22854
10 Sellers I R, Liu H Y, Groom K M, Childs D T, Robbins D, Badcock T J, Hopkinson M, Mowbray D J and Skolnick A S 2004 Electron. Lett. 40 1412
11 Fathpour S, Mi Z, Bhattacharya P, Kovsh A R, Mikhrin S S, Krestnikov I L, Kozhukhov A V and Ledentsov N N 2004 Appl. Phys. Lett. 85 5164
12 Yoon S, Moon Y, Lee T W, Yoon E and Kim Y D 1999 Appl. Phys. Lett. 74 2029
13 Anantathanasarn S, Notzel R, van Veldhoven P J, van Otten F W M, Barbarin Y, Servanton G, de Vries T, Smalbrugge E, Geluk E J, Eijkemans T J, Bente E A J M, Oei Y S, Smit M K and Wolter J H 2006 Appl. Phys. Lett. 89 073115
14 Li S G, Gong Q, Lao Y F, He K, Li J, Zhang Y G, Feng S L and Wang H L 2008 Appl. Phys. Lett. 93 111109
15 Franke D, Moehrle M, Boettcher J, Harde P, Sigmund A and Kuenzel H 2007 Appl. Phys. Lett. 91 081117
16 Kawaguchi K, Ekawa M, Kuramata A, Akiyama T, Ebe H, Sugawara M and Arakawa Y 2004 Appl. Phys. Lett. 85 4331
17 Michon A, Saint-Girons G, Beaudoin G, Sagnes I, Largeau L and Patriarche G 2005 Appl. Phys. Lett. 87 253114
18 Semenova E S, Kulkova I V, Kadkhodazadeh S, Schubert M and Yvind K 2011 Appl. Phys. Lett. 99 101106
19 Jang J W, Pyun S H, Lee S H, Lee I C, Jeong W G, Stevenson R, Dapkus P D, Kim N J, Hwang M S and Lee D 2004 Appl. Phys. Lett. 85 3675
20 Xiong Y L and Zhang X P IEEE J. Quantum Electron. 54 2000109
21 Hasan S, Merckling C, Pantouvaki M, Meersschaut J, Van C J and Vandervorst W 2019 J. Cryst. Growth 509 133
22 Ortner G, Allen C N, Dion C, Barrios P, Poitras D, Dalacu D, Pakulski G, Lapointe J, Poole P J, Render W and Raymond S 2006 Appl. Phys. Lett. 88 121119
23 Gao F, Luo S, Ji H M, Yang X G and Yang T 2015 Appl. Optics 54 472
24 Luo S, Ji H M, Gao F, Yang X G,Yang T 2013 J. Cryst. Growth 375 100
25 Luo S, Ji H M, Gao F, Yang X G, Liang P, Zhao L J and Yang T 2013 Chin. Phys. Lett. 30 068101
26 Jeong W G, Dapkus P D, Lee U H, Yim J S, Lee D and Lee B T 2001 Appl. Phys. Lett. 78 1171
27 Gao F, Luo S, Ji H M, Yang X G, Liang P and Yang T 2015 Opt. Express 23 18493
28 Lv X Q, Jin P and Wang Z G 2010 IEEE Photon. Technol. Lett. 22 1799
29 Ding Y Y, Gao F, Lv Z R, Zhang Z K, Yang T and Wang Z G 2018 J. Nanosci. Nanotech. 18 7426
30 Yuan H H, Gao F and Yang T 2018 Opt. Lett. 43 3025
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[3] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[4] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[5] Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications
Huang Jie (黄杰), Li Ming (黎明), Zhao Qian (赵倩), Gu Wen-Wen (顾雯雯), Lau Kei-May (刘纪美). Chin. Phys. B, 2015, 24(8): 087305.
[6] Normally-off metamorphic AlInAs/AlInAs HEMTs on Si substrates grown by MOCVD
Huang Jie (黄杰), Li Ming (黎明), Lau Kei-May (刘纪美). Chin. Phys. B, 2015, 24(7): 078102.
[7] Effect of pressure on the semipolar GaN (10-11) growth mode on patterned Si substrates
Liu Jian-Ming (刘建明), Zhang Jie (张洁), Lin Wen-Yu (林文禹), Ye Meng-Xin (叶孟欣), Feng Xiang-Xu (冯向旭), Zhang Dong-Yan (张东炎), Steve Ding, Xu Chen-Ke (徐宸科), Liu Bao-Lin (刘宝林). Chin. Phys. B, 2015, 24(5): 057801.
[8] High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal-organic chemical vapor deposition
Wang Lian-Kai (王连锴), Liu Ren-Jun (刘仁俊), Lü You (吕游), Yang Hao-Yu (杨皓宇), Li Guo-Xing (李国兴), Zhang Yuan-Tao (张源涛), Zhang Bao-Lin (张宝林). Chin. Phys. B, 2015, 24(1): 018102.
[9] Improvement in a-plane GaN crystalline quality using wet etching method
Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Zhao Yi (赵一), Xue Jun-Shuai (薛军帅), Ha Wei (哈微), Zhang Shuai (张帅), Cui Pei-Shui (崔培水), Wen Hui-Juan (温慧娟), Chen Xing (陈兴). Chin. Phys. B, 2014, 23(4): 047804.
[10] Mid-gap photoluminescence and magnetic properties of GaMnN films grown by metal-organic chemical vapor deposition
Xing Hai-Ying (邢海英), Xu Zhang-Cheng (徐章程), Cui Ming-Qi (崔明启), Xie Yu-Xin (谢玉芯), Zhang Guo-Yi (张国义). Chin. Phys. B, 2014, 23(10): 107803.
[11] Enhanced performance of InGaN/GaN multiple quantum well solar cells with double indium content
Zhao Bi-Jun (赵璧君), Chen Xin (陈鑫), Ren Zhi-Wei (任志伟), Tong Jin-Hui (童金辉), Wang Xing-Fu (王幸福), Li Dan-Wei (李丹伟), Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Yi Han-Xiang (易翰翔), Li Shu-Ti (李述体). Chin. Phys. B, 2013, 22(8): 088401.
[12] Growth and characterization of GaAs/InxGa1-xAs/GaAs axial nanowire heterostructures with symmetrical heterointerfaces
Lü Xiao-Long (吕晓龙), Zhang Xia (张霞), Liu Xiao-Long (刘小龙), Yan Xin (颜鑫), Cui Jian-Gong (崔建功), Li Jun-Shuai (李军帅), Huang Yong-Qing (黄永清), Ren Xiao-Min (任晓敏). Chin. Phys. B, 2013, 22(6): 066101.
[13] Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering
Wang Dang-Hui (王党会), Xu Sheng-Rui (许晟瑞), Hao Yue (郝跃), Zhang Jin-Cheng (张进成), Xu Tian-Han (许天旱), Lin Zhi-Yu (林志宇), Zhou Hao (周昊), Xue Xiao-Yong (薛晓咏 ). Chin. Phys. B, 2013, 22(2): 028101.
[14] Growth and properties of wide spectral white light emitting diodes
Xie Zi-Li(谢自力), Zhang Rong(张荣), Fu De-Yi(傅德颐), Liu Bin(刘斌),Xiu Xiang-Qian(修向前), Hua Xue-Mei(华雪梅), Zhao Hong(赵红), Chen Peng(陈鹏),Han Ping(韩平), Shi Yi(施毅), and Zheng You-Dou(郑有炓) . Chin. Phys. B, 2011, 20(11): 116801.
No Suggested Reading articles found!