INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels |
Mei-Na Zhang(张美娜)1, Yan Shao(邵龑)1,2, Xiao-Lin Wang(王晓琳)1, Xiaohan Wu(吴小晗)1, Wen-Jun Liu(刘文军)1, Shi-Jin Ding(丁士进)1 |
1 State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; 2 Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
|
|
Abstract Photodetectors based on amorphous InGaZnO (a-IGZO) thin film transistor (TFT) and halide perovskites have attracted attention in recent years. However, such a stack assembly of a halide perovskite layer/an a-IGZO channel, even with an organic semiconductor film inserted between them, easily has a very limited photoresponsivity. In this article, we investigate photoresponsive characteristics of TFTs by using CsPbX3 (X=Br or I) quantum dots (QDs) embedded into the a-IGZO channel, and attain a high photoresponsivity over 103A·W-1, an excellent detectivity in the order of 1016 Jones, and a light-to-dark current ratio up to 105 under visible lights. This should be mainly attributed to the improved transfer efficiency of photoelectrons from the QDs to the a-IGZO channel. Moreover, spectrally selective photodetection is demonstrated by introducing halide perovskite QDs with different bandgaps. Thus, this work provides a novel strategy of device structure optimization for significantly improving the photoresponsive characteristics of TFT photodetectors.
|
Received: 22 April 2020
Revised: 21 May 2020
Accepted manuscript online:
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
81.07.Ta
|
(Quantum dots)
|
|
85.30.Tv
|
(Field effect devices)
|
|
81.05.Gc
|
(Amorphous semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61874029) and the National Key Technologies R&D Program of China (Grant No. 2015ZX02102-003). |
Corresponding Authors:
Xiaohan Wu, Shi-Jin Ding
E-mail: wuxiaohan@fudan.edu.cn;sjding@fudan.edu.cn
|
Cite this article:
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进) Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels 2020 Chin. Phys. B 29 078503
|
[1] |
Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488
|
[2] |
Chuang C S, Fung T C, Mullins B G, Nomura K, Kamiya T, Shieh H P D, Hosono H and Kanicki J 2008 Proc. Soc. Inf. Display 39 1215
|
[3] |
Kamiya T, Nomura K and Hosono H 2010 Sci. Technol. Adv. Mater 11 044305
|
[4] |
Fortunato E, Barquinha P and Martins R 2012 Adv. Mater. 24 2945
|
[5] |
Heremans P, Tripathi A K, de Jamblinne de Meux A, Smits E C, Hou B, Pourtois G and Gelinck G H 2016 Adv. Mater. 28 4266
|
[6] |
Sheng J, Lee H J, Oh S and Park J S 2016 ACS Appl. Mater. Interfaces 8 33821
|
[7] |
Zhang Y H, Mei Z X, Liang H L and Du X L 2017 Chin. Phys. B 26 047307
|
[8] |
Xiao X, Zhang L, Shao Y, Zhou X, He H and Zhang S 2018 ACS Appl. Mater Interfaces 10 25850
|
[9] |
Zan H W, Chen W T, Hsueh H W, Kao S C, Ku M C, Tsai C C and Meng H F 2010 Appl. Phys. Lett. 97 203506
|
[10] |
Wang H, Xiao Y, Chen Z, Xu W, Long M and Xu J B 2015 Appl. Phys. Lett. 106 242102
|
[11] |
Liu J, Wen H and Shen L 2020 Nanotechnology 31 214001
|
[12] |
Xu Y and Lin Q 2020 Appl. Phys. Rev. 7 011315
|
[13] |
Wang Y F, Qu F D, Zhou J R, Guo W B, Dong W, Liu C X, Ruan S P 2015 Chin. Phys. Lett. 32 88504
|
[14] |
Yang J, Kwak H, Lee Y, Kang Y S, Cho M H, Cho J H, Kim Y H, Jeong S J, Park S, Lee H J and Kim H 2016 ACS Appl. Mater. Interfaces 8 8576
|
[15] |
Pak S W, Chu D, Song D Y, Lee S K and Kim E K 2017 Nanotechnology 28 475206
|
[16] |
Pei Z, Lai H C, Wang J Y, Chiang W H and Chen C H 2015 IEEE Electron Device Lett. 36 44
|
[17] |
Shin S W, Lee K H, Park J S and Kang S J 2015 ACS Appl. Mater. Interfaces 7 19666
|
[18] |
Hwang D K, Lee Y T, Lee H S, Lee Y J, Shokouh S H, Kyhm J h, Lee J, Kim H H, Yoo T H, Nam S H, Son D I, Ju B K, Park M C, Song J D, Choi W K and Im S 2016 NPG Asia Mater. 8 e233
|
[19] |
Weng Q C, An Z H, Xiong D Y and Zhu Z Q 2015 Chin. Phys. Lett. 32 108503
|
[20] |
Du S, Li G, Cao X, Wang Y, Lu H, Zhang S, Liu C and Zhou H 2017 Adv. Electron. Mater. 3 1600325
|
[21] |
Sun M, Fang Q, Zhang Z, Xie D, Sun Y, Xu J, Li W, Ren T and Zhang Y 2018 ACS Appl. Mater Interfaces 10 7231
|
[22] |
Tak Y J, Kim D J, Kim W G, Lee J H, Kim S J, Kim J H and Kim H J 2018 ACS Appl. Mater. Interfaces 10 12854
|
[23] |
Xu X, Yan L, Zou T, Qiu R, Liu C, Dai Q, Chen J, Zhang S and Zhou H 2018 ACS Appl. Mater. Interfaces 10 44144
|
[24] |
Na H J, Cho N K, Park J, Lee S E, Lee E G, Im C and Kim Y S 2019 J. Mater. Chem. C 7 14223
|
[25] |
Wei S, Wang F, Zou X, Wang L, Liu C, Liu X, Hu W, Fan Z, Ho J C and Liao L 2019 Adv. Mater. 32 1907527
|
[26] |
Yu H, Liu X, Yan L, Zou T, Yang H, Liu C, Zhang S and Zhou H 2019 Semicond. Sci. Technol. 34 125013
|
[27] |
Liu C K, Tai Q, Wang N, Tang G, Loi H L and Yan F 2019 Adv. Sci. 6 1900751
|
[28] |
Wang Y, Song L, Chen Y and Huang W 2019 ACS Photon. 7 10
|
[29] |
Zhao Y, Li C and Shen L 2019 InfoMat 1 164
|
[30] |
Li C, Wang H, Wang F, Li T, Xu M, Wang H, Wang Z, Zhan X, Hu W and Shen L 2020 Light Sci. Appl. 9 31
|
[31] |
Tiebin Yang F L, Rongkun Zheng 2019 ACS Appl. Electron. Mater. 1 1348
|
[32] |
Zhang C, Kuang D B and Wu W Q 2020 Small Methods 4 1900662
|
[33] |
Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S and Lee J S 2016 Chem. Commun. 52 2067
|
[34] |
Bi C, Wang S, Wen W, Yuan J, Cao G and Tian J 2018 J. Phys. Chem. C 122 5151
|
[35] |
Bi C, Wang S, Li Q, Kershaw S V, Tian J and Rogach A L 2019 J. Phys. Chem. Lett. 10 943
|
[36] |
Lao X, Li X, Agren H and Chen G 2019 Nanomaterials 9 172
|
[37] |
Wang Y, Gao M L, Wu J L, Zhang X W 2019 Chin. Phys. B 28 18502
|
[38] |
Chen W, Hao J, Hu W, Zang Z, Tang X, Fang L, Niu T and Zhou M 2017 Small 13 1604085
|
[39] |
Chen Y, Chu Y, Wu X, Ou-Yang W and Huang J 2017 Adv. Mater. 29 1704062
|
[40] |
Davis N J, de la Pena F J, Tabachnyk M, Richter J M, Lamboll R D, Booker E P, Wisnivesky Rocca Rivarola F, Griffiths J T, Ducati C, Menke S M, Deschler F and Greenham N C 2017 J. Phys. Chem. C Nanomater Interfaces 121 3790
|
[41] |
Yu Y, Zhang Y, Song X, Zhang H, Cao M, Che Y, Dai H, Yang J, Zhang H and Yao J 2017 Adv. Opt. Mater. 5 1700565
|
[42] |
Cai Z, Li F, Xu W, Xia S, Zeng J, He S and Chen X 2018 Nano Res. 11 1447
|
[43] |
Liao J F, Xu Y F, Wang X D, Chen H Y and Kuang D B 2018 ACS Appl. Mater. Interfaces 10 42301
|
[44] |
Jiang D W, Xiang W, Guo F Y, Hao H Y, Han X, Li X C, Wang G W, Xu Y Q, Yu Q J and Niu Z C 2016 Chin. Phys. Lett. 33 48502
|
[45] |
Yong W, Hao L, You L X, Lv C L, Wang H Q, Zhang X Y, Zhang W J, Zhou H, Zhang L, Yang X Y and Wang Z 2019 Chin. Phys. B 28 78502
|
[46] |
Li X, Yu D, Cao F, Gu Y, Wei Y, Wu Y, Song J and Zeng H 2016 Adv. Funct. Mater. 26 5903
|
[47] |
Shao Y, Wu X, Zhang M N, Liu W J and Ding S J 2019 Nanoscale Res. Lett. 14 122
|
[48] |
Fang Y, Dong Q, Shao Y, Yuan Y and Huang J 2015 Nat. Photon. 9 679
|
[49] |
Song J, Xu L, Li J, Xue J, Dong Y, Li X and Zeng H 2016 Adv. Mater. 28 4861
|
[50] |
Chen Y, Wu X, Chu Y, Zhou J, Zhou B and Huang J 2018 Nanomicro Lett. 10 57
|
[51] |
Ma X F, Huang Y Q, Zhi Y S, Wang X, Li P G, Wu Z P and Tang W H 2019 Chin. Phys. B 28 88503
|
[52] |
Fang H and Hu W 2017 Adv. Sci. 4 1700323
|
[53] |
Long L, Cao D, Fei J, Wang J, Zhou Y, Jiang Z, Jiao Z and Shu H 2019 Chem. Phys. Lett. 734 136719
|
[54] |
Azpiroz J M, Mosconi E, Bisquert J and De Angelis F 2015 Energy Environ. Sci. 8 2118
|
[55] |
Podzorov V and Gershenson M E 2005 Phys. Rev. Lett. 95 016602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|