Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078503    DOI: 10.1088/1674-1056/ab9738
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels

Mei-Na Zhang(张美娜)1, Yan Shao(邵龑)1,2, Xiao-Lin Wang(王晓琳)1, Xiaohan Wu(吴小晗)1, Wen-Jun Liu(刘文军)1, Shi-Jin Ding(丁士进)1
1 State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China;
2 Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Abstract  Photodetectors based on amorphous InGaZnO (a-IGZO) thin film transistor (TFT) and halide perovskites have attracted attention in recent years. However, such a stack assembly of a halide perovskite layer/an a-IGZO channel, even with an organic semiconductor film inserted between them, easily has a very limited photoresponsivity. In this article, we investigate photoresponsive characteristics of TFTs by using CsPbX3 (X=Br or I) quantum dots (QDs) embedded into the a-IGZO channel, and attain a high photoresponsivity over 103A·W-1, an excellent detectivity in the order of 1016 Jones, and a light-to-dark current ratio up to 105 under visible lights. This should be mainly attributed to the improved transfer efficiency of photoelectrons from the QDs to the a-IGZO channel. Moreover, spectrally selective photodetection is demonstrated by introducing halide perovskite QDs with different bandgaps. Thus, this work provides a novel strategy of device structure optimization for significantly improving the photoresponsive characteristics of TFT photodetectors.
Keywords:  perovskite quantum dots      a-IGZO      thin-film transistor      photoresponsive characteristics  
Received:  22 April 2020      Revised:  21 May 2020      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  81.07.Ta (Quantum dots)  
  85.30.Tv (Field effect devices)  
  81.05.Gc (Amorphous semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61874029) and the National Key Technologies R&D Program of China (Grant No. 2015ZX02102-003).
Corresponding Authors:  Xiaohan Wu, Shi-Jin Ding     E-mail:  wuxiaohan@fudan.edu.cn;sjding@fudan.edu.cn

Cite this article: 

Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进) Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels 2020 Chin. Phys. B 29 078503

[1] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488
[2] Chuang C S, Fung T C, Mullins B G, Nomura K, Kamiya T, Shieh H P D, Hosono H and Kanicki J 2008 Proc. Soc. Inf. Display 39 1215
[3] Kamiya T, Nomura K and Hosono H 2010 Sci. Technol. Adv. Mater 11 044305
[4] Fortunato E, Barquinha P and Martins R 2012 Adv. Mater. 24 2945
[5] Heremans P, Tripathi A K, de Jamblinne de Meux A, Smits E C, Hou B, Pourtois G and Gelinck G H 2016 Adv. Mater. 28 4266
[6] Sheng J, Lee H J, Oh S and Park J S 2016 ACS Appl. Mater. Interfaces 8 33821
[7] Zhang Y H, Mei Z X, Liang H L and Du X L 2017 Chin. Phys. B 26 047307
[8] Xiao X, Zhang L, Shao Y, Zhou X, He H and Zhang S 2018 ACS Appl. Mater Interfaces 10 25850
[9] Zan H W, Chen W T, Hsueh H W, Kao S C, Ku M C, Tsai C C and Meng H F 2010 Appl. Phys. Lett. 97 203506
[10] Wang H, Xiao Y, Chen Z, Xu W, Long M and Xu J B 2015 Appl. Phys. Lett. 106 242102
[11] Liu J, Wen H and Shen L 2020 Nanotechnology 31 214001
[12] Xu Y and Lin Q 2020 Appl. Phys. Rev. 7 011315
[13] Wang Y F, Qu F D, Zhou J R, Guo W B, Dong W, Liu C X, Ruan S P 2015 Chin. Phys. Lett. 32 88504
[14] Yang J, Kwak H, Lee Y, Kang Y S, Cho M H, Cho J H, Kim Y H, Jeong S J, Park S, Lee H J and Kim H 2016 ACS Appl. Mater. Interfaces 8 8576
[15] Pak S W, Chu D, Song D Y, Lee S K and Kim E K 2017 Nanotechnology 28 475206
[16] Pei Z, Lai H C, Wang J Y, Chiang W H and Chen C H 2015 IEEE Electron Device Lett. 36 44
[17] Shin S W, Lee K H, Park J S and Kang S J 2015 ACS Appl. Mater. Interfaces 7 19666
[18] Hwang D K, Lee Y T, Lee H S, Lee Y J, Shokouh S H, Kyhm J h, Lee J, Kim H H, Yoo T H, Nam S H, Son D I, Ju B K, Park M C, Song J D, Choi W K and Im S 2016 NPG Asia Mater. 8 e233
[19] Weng Q C, An Z H, Xiong D Y and Zhu Z Q 2015 Chin. Phys. Lett. 32 108503
[20] Du S, Li G, Cao X, Wang Y, Lu H, Zhang S, Liu C and Zhou H 2017 Adv. Electron. Mater. 3 1600325
[21] Sun M, Fang Q, Zhang Z, Xie D, Sun Y, Xu J, Li W, Ren T and Zhang Y 2018 ACS Appl. Mater Interfaces 10 7231
[22] Tak Y J, Kim D J, Kim W G, Lee J H, Kim S J, Kim J H and Kim H J 2018 ACS Appl. Mater. Interfaces 10 12854
[23] Xu X, Yan L, Zou T, Qiu R, Liu C, Dai Q, Chen J, Zhang S and Zhou H 2018 ACS Appl. Mater. Interfaces 10 44144
[24] Na H J, Cho N K, Park J, Lee S E, Lee E G, Im C and Kim Y S 2019 J. Mater. Chem. C 7 14223
[25] Wei S, Wang F, Zou X, Wang L, Liu C, Liu X, Hu W, Fan Z, Ho J C and Liao L 2019 Adv. Mater. 32 1907527
[26] Yu H, Liu X, Yan L, Zou T, Yang H, Liu C, Zhang S and Zhou H 2019 Semicond. Sci. Technol. 34 125013
[27] Liu C K, Tai Q, Wang N, Tang G, Loi H L and Yan F 2019 Adv. Sci. 6 1900751
[28] Wang Y, Song L, Chen Y and Huang W 2019 ACS Photon. 7 10
[29] Zhao Y, Li C and Shen L 2019 InfoMat 1 164
[30] Li C, Wang H, Wang F, Li T, Xu M, Wang H, Wang Z, Zhan X, Hu W and Shen L 2020 Light Sci. Appl. 9 31
[31] Tiebin Yang F L, Rongkun Zheng 2019 ACS Appl. Electron. Mater. 1 1348
[32] Zhang C, Kuang D B and Wu W Q 2020 Small Methods 4 1900662
[33] Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S and Lee J S 2016 Chem. Commun. 52 2067
[34] Bi C, Wang S, Wen W, Yuan J, Cao G and Tian J 2018 J. Phys. Chem. C 122 5151
[35] Bi C, Wang S, Li Q, Kershaw S V, Tian J and Rogach A L 2019 J. Phys. Chem. Lett. 10 943
[36] Lao X, Li X, Agren H and Chen G 2019 Nanomaterials 9 172
[37] Wang Y, Gao M L, Wu J L, Zhang X W 2019 Chin. Phys. B 28 18502
[38] Chen W, Hao J, Hu W, Zang Z, Tang X, Fang L, Niu T and Zhou M 2017 Small 13 1604085
[39] Chen Y, Chu Y, Wu X, Ou-Yang W and Huang J 2017 Adv. Mater. 29 1704062
[40] Davis N J, de la Pena F J, Tabachnyk M, Richter J M, Lamboll R D, Booker E P, Wisnivesky Rocca Rivarola F, Griffiths J T, Ducati C, Menke S M, Deschler F and Greenham N C 2017 J. Phys. Chem. C Nanomater Interfaces 121 3790
[41] Yu Y, Zhang Y, Song X, Zhang H, Cao M, Che Y, Dai H, Yang J, Zhang H and Yao J 2017 Adv. Opt. Mater. 5 1700565
[42] Cai Z, Li F, Xu W, Xia S, Zeng J, He S and Chen X 2018 Nano Res. 11 1447
[43] Liao J F, Xu Y F, Wang X D, Chen H Y and Kuang D B 2018 ACS Appl. Mater. Interfaces 10 42301
[44] Jiang D W, Xiang W, Guo F Y, Hao H Y, Han X, Li X C, Wang G W, Xu Y Q, Yu Q J and Niu Z C 2016 Chin. Phys. Lett. 33 48502
[45] Yong W, Hao L, You L X, Lv C L, Wang H Q, Zhang X Y, Zhang W J, Zhou H, Zhang L, Yang X Y and Wang Z 2019 Chin. Phys. B 28 78502
[46] Li X, Yu D, Cao F, Gu Y, Wei Y, Wu Y, Song J and Zeng H 2016 Adv. Funct. Mater. 26 5903
[47] Shao Y, Wu X, Zhang M N, Liu W J and Ding S J 2019 Nanoscale Res. Lett. 14 122
[48] Fang Y, Dong Q, Shao Y, Yuan Y and Huang J 2015 Nat. Photon. 9 679
[49] Song J, Xu L, Li J, Xue J, Dong Y, Li X and Zeng H 2016 Adv. Mater. 28 4861
[50] Chen Y, Wu X, Chu Y, Zhou J, Zhou B and Huang J 2018 Nanomicro Lett. 10 57
[51] Ma X F, Huang Y Q, Zhi Y S, Wang X, Li P G, Wu Z P and Tang W H 2019 Chin. Phys. B 28 88503
[52] Fang H and Hu W 2017 Adv. Sci. 4 1700323
[53] Long L, Cao D, Fei J, Wang J, Zhou Y, Jiang Z, Jiao Z and Shu H 2019 Chem. Phys. Lett. 734 136719
[54] Azpiroz J M, Mosconi E, Bisquert J and De Angelis F 2015 Energy Environ. Sci. 8 2118
[55] Podzorov V and Gershenson M E 2005 Phys. Rev. Lett. 95 016602
[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[3] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[4] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[5] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[6] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[7] Degradation and its fast recovery in a-IGZO thin-film transistors under negative gate bias stress
Jianing Guo(郭佳宁), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2021, 30(11): 118102.
[8] A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors
Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生). Chin. Phys. B, 2020, 29(11): 118101.
[9] Investigation and active suppression of self-heating induced degradation in amorphous InGaZnO thin film transistors
Dong Zhang(张东), Chenfei Wu(武辰飞), Weizong Xu(徐尉宗), Fangfang Ren(任芳芳), Dong Zhou(周东), Peng Yu(于芃), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(1): 017303.
[10] Water-based processed and alkoxide-based processed indium oxide thin-film transistors at different annealing temperatures
Xu-Yang Li(栗旭阳), Zhi-Nong Yu(喻志农), Jin Cheng(程锦), Yong-Hua Chen(陈永华), Jian-She Xue(薛建设), Jian Guo(郭建), Wei Xue(薛唯). Chin. Phys. B, 2018, 27(4): 048504.
[11] Review of flexible and transparent thin-film transistors based on zinc oxide and related materials
Yong-Hui Zhang(张永晖), Zeng-Xia Mei(梅增霞), Hui-Li Liang(梁会力), Xiao-Long Du(杜小龙). Chin. Phys. B, 2017, 26(4): 047307.
[12] Contact resistance asymmetry of amorphous indium-gallium-zinc-oxide thin-film transistors by scanning Kelvin probe microscopy
Chen-Fei Wu(武辰飞), Yun-Feng Chen(陈允峰), Hai Lu(陆海), Xiao-Ming Huang(黄晓明), Fang-Fang Ren(任芳芳), Dun-Jun Chen(陈敦军), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2016, 25(5): 057306.
[13] Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors
Qian Hui-Min (钱慧敏), Yu Guang (于广), Lu Hai (陆海), Wu Chen-Fei (武辰飞), Tang Lan-Feng (汤兰凤), Zhou Dong (周东), Ren Fang-Fang (任芳芳), Zhang Rong (张荣), Zheng You-Liao (郑有炓), Huang Xiao-Ming (黄晓明). Chin. Phys. B, 2015, 24(7): 077307.
[14] Electrical properties of zinc-oxide-based thin-film transistors using strontium-oxide-doped semiconductors
Wu Shao-Hang (吴绍航), Zhang Nan (张楠), Hu Yong-Sheng (胡永生), Chen Hong (陈红), Jiang Da-Peng (蒋大鹏), Liu Xing-Yuan (刘星元). Chin. Phys. B, 2015, 24(10): 108504.
[15] Positive gate-bias temperature instability of ZnO thin-film transistor
Liu Yu-Rong (刘玉荣), Su Jing (苏晶), Lai Pei-Tao (黎沛涛), Yao Ruo-He (姚若河). Chin. Phys. B, 2014, 23(6): 068501.
No Suggested Reading articles found!