Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107805    DOI: 10.1088/1674-1056/25/10/107805
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Proper In deposition amount for on-demand epitaxy of InAs/GaAs single quantum dots

Xiang-Jun Shang(尚向军)1,2, Jian-Xing Xu(徐建星)1,2, Ben Ma(马奔)1,2, Ze-Sheng Chen(陈泽升)1,2, Si-Hang Wei(魏思航)1,2, Mi-Feng Li(李密峰)1,2, Guo-Wei Zha(查国伟)1,2, Li-Chun Zhang(张立春)1,2, Ying Yu(喻颖)1,2, Hai-Qiao Ni(倪海桥)1,2, Zhi-Chuan Niu(牛智川)1,2
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  The test-QD in-situ annealing method could surmount the critical nucleation condition of InAs/GaAs single quantum dots (SQDs) to raise the growth repeatability. Here, through many growth tests on rotating substrates, we develop a proper In deposition amount (θ) for SQD growth, according to the measured critical θ for test QD nucleation (θc). The proper ratio θ/θc, with a large tolerance of the variation of the real substrate temperature (Tsub), is 0.964-0.971 at the edge and >0.989 but <0.996 in the center of a 1/4-piece semi-insulating wafer, and around 0.9709 but <0.9714 in the center of a 1/4-piece N+ wafer as shown in the evolution of QD size and density as θ/θc varies. Bright SQDs with spectral lines at 905 nm-935 nm nucleate at the edge and correlate with individual 7 nm-8 nm-height QDs in atomic force microscopy, among dense 1 nm-5 nm-height small QDs with a strong spectral profile around 860 nm-880 nm. The higher Tsub in the center forms diluter, taller and uniform QDs, and very dilute SQDs for a proper θ/θc: only one 7-nm-hight SQD in 25 μm2. On a 2-inch (1 inch=2.54 cm) semi-insulating wafer, by using θ/θc = 0.961, SQDs nucleate in a circle in 22% of the whole area. More SQDs will form in the broad high-Tsub region in the center by using a proper θ/θc.
Keywords:  single quantum dot      proper deposition amount      on-chip distribution      height statistics      μPL spectra  
Received:  24 April 2016      Revised:  02 June 2016      Accepted manuscript online: 
PACS:  78.67.Hc (Quantum dots)  
  81.07.Ta (Quantum dots)  
  78.55.Cr (III-V semiconductors)  
  73.21.La (Quantum dots)  
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933304), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB01010200), and the National Natural Science Foundation of China (Grant No. 65015196).
Corresponding Authors:  Zhi-Chuan Niu     E-mail:  zcniu@semi.ac.cn

Cite this article: 

Xiang-Jun Shang(尚向军), Jian-Xing Xu(徐建星), Ben Ma(马奔), Ze-Sheng Chen(陈泽升), Si-Hang Wei(魏思航), Mi-Feng Li(李密峰), Guo-Wei Zha(查国伟), Li-Chun Zhang(张立春), Ying Yu(喻颖), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) Proper In deposition amount for on-demand epitaxy of InAs/GaAs single quantum dots 2016 Chin. Phys. B 25 107805

[1] Konthasinghe K, Peiris M, Yu Y, Li M F, He J F, Wang L J, Ni H Q, Niu Z C, Shih C K and Muller A 2012 Phys. Rev. Lett. 109 267402
[2] Heindel T, Schneider C, Lermer C, Kwon S H, Braun T, Reitzenstein S, Höfling S, Kamp M and Forchel A 2010 Appl. Phys. Lett. 96 011107
[3] Patel R B, Bennett A J, Farrer I, Nicoll C A, Ritchie D A and Shields A J 2010 Nat. Photon. 4 632
[4] Dou X M, Chang X Y, Sun B Q, Xiong Y H, Niu Z C, Huang S S, Ni H Q, Du Y and Xia J B 2008 Appl. Phys. Lett. 93 101107
[5] Yamaguchi M, Asano T and Noda S 2012 Rep. Prog. Phys. 75 096401
[6] He Y, He Y M, Wei Y J, Jiang X, Chen M C, Xiong F L, Zhao Y, Schneider C, Kamp M, Hofling S, Lu C Y and Pan J W 2013 Phys. Rev. Lett. 111 237403
[7] Wu X F, Dou X M, Ding K, Zhou P Y, Ni H Q, Niu Z C, Zhu H J, Jiang D S, Zhao C L and Sun B Q 2015 Chin. Phys. Lett. 32 124204
[8] Ye H, Peng Y W, Yu Z Y, Zhang W and Liu Y M 2015 Chin. Phys. B 24 114202
[9] Zhang W and Lu H T 2015 Chin. Phys. B 24 067806
[10] Ates S, Ulrich S M, Reitzenstein S, Loffler A, Forchel A and Michler P 2009 Phys. Rev. Lett. 103 167402
[11] Placidi E, Arciprete F, Fanfoni M, Patella F and Balzarotti A 2008 The InAs/GaAs(001) Quantum Dots Transition: Advances on Understanding, Self-Assembled Quantum Dots (Chapter 1) (New York: Springer) p. 6
[12] Yu Y, Shang X J, Li M F, Zha G W, Xu J X, Wang L J, Wang G W, Ni H Q and Niu Z C 2013 Appl. Phys. Lett. 102 201103
[13] Yu Y, Li M F, He J F, He Y M, Wei Y J, He Y, Zha G W, Shang X J, Wang J, Wang L J, Wang G W, Ni H Q, Lu C Y and Niu Z C 2013 Nano Lett. 13 1399
[14] Yu Y, Dou X M, Wei B, Zha G W, Shang X J, Wang L, Su D, Xu J X, Wang H Y, Ni H Q, Sun B Q, Ji Y, Han X D and Niu Z C 2014 Adv. Mater. 26 2710
[15] Yang S, Dou X M, Yu Y, Ni H Q, Niu Z C, Jiang D S and Sun B Q 2015 Chin. Phys. Lett. 32 077804
[16] Shiralagi K T, Kriman A M and Maracas G N 1991 J. Vac. Sci. Technol. A 9 65
[17] Li M F, Yu Y, He J F, Wang L J, Zhu Y, Shang X J, Ni H Q and Niu Z C 2013 Nanoscale Res. Lett. 8 86
[18] Fang X M, Yurasits T R, Loubychev D, Wu Y, Liu W K, DeBruzzi M, Priddy S and Schiprett C 2001 J. Vac. Sci. Technol. B 19 1554
[19] Jacksona A W and Gossard A C 2007 J. Crystal Growth 301-302 105-108
[20] Nagai M, Matsumoto K, Morishima M, Hone H, Niwata Y and Hayakawa T 1993 J. Crystal Growth 127 54
[21] García J M, Medeiros-Ribeiro G, Schmidt K, Ngo T, Feng J L, Lorke A, Kotthaus J and Petroff P M 1997 Appl. Phys. Lett. 71 2014
[22] Eisele H, Lenz A, Heitz R, Timm R, Dähne M, Temko Suzuki Y T and Jacobi K 2008 J. Appl. Phys. 104 124301
[23] Shang X J, Yu Y, Zha G W, Li M F, Wang L J, Xu J X, Ni H Q and Niu Z C 2013 J. Phys. D: Appl. Phys. 46 405102
[1] Size dependence of biexciton binding energy in single InAs/GaAs quantum dots
Dou Xiu-Ming(窦秀明), Sun Bao-Quan(孙宝权), Huang She-Song(黄社松), Ni Hai-Qiao(倪海桥), Niu Zhi-Chuan(牛智川), Yang Fu-Hua(杨富华), and Jia Rui(贾锐). Chin. Phys. B, 2009, 18(6): 2258-2263.
No Suggested Reading articles found!