Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 086802    DOI: 10.1088/1674-1056/ac633c
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study

Zhiqiang Ye(叶志强)1,2, Yawei Lei(雷亚威)1,2, Jingdan Zhang(张静丹)1,2, Yange Zhang(张艳革)1,2,†, Xiangyan Li(李祥艳)1,2, Yichun Xu(许依春)1,2,‡, Xuebang Wu(吴学邦)1,2, C. S. Liu(刘长松)1,2, Ting Hao(郝汀)3, and Zhiguang Wang(王志光)4
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
4 Institute of Modern physics, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract  Oxidation corrosion of steels usually occurs in contact with the oxygen-contained environment, which is accelerated by high oxygen concentration and irradiation. The oxidation mechanism of steels is investigated by the adsorption/solution of oxygen atoms on/under body-centered-cubic (bcc) iron surfaces, and diffusion of oxygen atoms on the surface and in the near-surface region. Energetic results indicate that oxygen atoms prefer to adsorb at hollow and long-bridge positions on the Fe(100) and (110) surfaces, respectively. As the coverage of oxygen atoms increases, oxygen atoms would repel each other and gradually dissolve in the near-surface and bulk region. As vacancies exist, oxygen atoms are attracted by vacancies, especially in the near-surface and bulk region. Dynamic results indicate that the diffusion of O atoms on surfaces is easier than that into near-surface, which is affected by oxygen coverage and vacancies. Moreover, the effects of oxygen concentration and irradiation on oxygen density in the near-surface and bulk region are estimated by the McLean's model with a simple hypothesis.
Keywords:  oxidation corrosion      oxygen concentration      irradiation defects      bcc-Fe surfaces      first-principles study  
Received:  27 December 2021      Revised:  15 March 2022      Accepted manuscript online:  01 April 2022
PACS:  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  28.52.Fa (Materials)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFE0302400 and 2017YFA0402803), the National Nature Science Foundation of China (Grant Nos. 11735015, 52071314, 51871207, U1832206, 12075274, U1967211, 52171084), and Hefei Advanced Computing Center.
Corresponding Authors:  Yange Zhang, Yichun Xu     E-mail:  yangezhang@issp.ac.cn;xuyichun@issp.ac.cn

Cite this article: 

Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光) Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study 2022 Chin. Phys. B 31 086802

[1] Martinelli L, Balbaud-Célérier F, Terlain A, Bosonnet S, Picard G and Santarini G 2008 Corros. Sci 50 2537
[2] Fazio C 2015 Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies (Paris:Organization for Economic Cooperation and Development/Nuclear Energy Association) pp. 431-478
[3] Wagner C 1969 Corros. Sci 9 91
[4] Yeliseyeva O, Tsisar V and Benamati G 2008 Corros. Sci 50 1672
[5] Zhang J and Li N 2008 J. Nucl. Mater. 373 351
[6] Schroer C, Tsisar V, Durand A, Wedemeyer O, Skrypnik A and Konys J 2019 J. Nucl. Eng. Radiat. Sci. 5 011006
[7] Gorynin I V, Karzov G P, Markov V G and Yakovlev V A 1999 Met. Sci. Heat Treat. 41 9
[8] Barbier F and Rusanov A 2001 J. Nucl. Mater. 296 231
[9] Frazer D, Qvist S, Parker S, Krumwiede D L, Caro M, Tesmer J, Maloy S A, Wang Y Q and Hosemann P 2016 J. Nucl. Mater. 479 382
[10] Yao C, Wang Z, Zhang H, Chang H, Sheng Y, Shen T, Zhu Y, Pang L, Cui M, Wei K, Sun J, Peng T, Liu C and Ma Z 2019 J. Nucl. Mater. 523 260
[11] Xing H, Hu P, Li S, Zuo Y, Han J, Hua X, Wang K, Yang F, Feng P and Chang T 2021 J. Mater. Sci. Technol. 62 180
[12] Błoński P, Kiejna A and Hafner J 2005 Surf. Sci. 590 88
[13] Błoński P, Kiejna A and Hafner J 2007 J. Phys.:Condens. Matter 19 096011
[14] Nishihara K, Nomitsu T, Nakagawa T and Mizuno S 2019 Surf. Sci. 685 34
[15] Barouh C, Schuler T, Fu C C and Nastar M 2014 Phys. Rev. B 90 054112
[16] Fu C L, Krcmar M, Painter G S and Chen X Q 2007 Phys. Rev. Lett 99 225502
[17] Barouh C, Schuler T, Fu C C and Jourdan T 2015 Phys. Rev. B 92 104102
[18] Yuan X, Song C, Kong X, Xu Y, Fang Q F and Liu C S 2013 Physica B 425 42
[19] Ropo M, Punkkinen M, Kuopanportti P, Yasir M, Granroth S, Kuronen A and Kokko K 2021 Sci. Rep. 11 6046
[20] Shang S L, Fang H Z, Wang J, Guo C P, Wang Y, Jablonski P D, Du Y and Liu Z K 2014 Corros. Sci 83 94
[21] Wang X, Posselt M and Faßbender J 2018 Phys. Rev. B 98 064103
[22] Liu Z J, Zhang Y G, Li X Y, Xu Y C, Wu X B, Liu C S, Kong X S, Yao C F and Wang Z G 2021 RSC Advances 11 8643
[23] Wang X, Faßbender J and Posselt M 2020 Phys. Rev. B 101 174107
[24] Byggmastar J, Nagel M, Albe K, Henriksson K O E and Nordlund K 2019 J. Phys.:Condes. Matter 31 215401
[25] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[26] Kresse F G 1996 Phys. Rev. B 54 11169
[27] Perdew J P and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
[28] Kresse J G 1999 Phys. Rev. B 59 1758
[29] Blochl P E 1994 Phys. Rev. B 50 17953
[30] Han J H and Oda T 2017 Phys. Chem. Chem. Phys. 19 9945
[31] Nandi P K, Valsakumar M C, Chandra S, Sahu H K and Sundar C S 2010 J. Phys.:Condes. Matter 22 345501
[32] Levesque M, Gupta M and Gupta R P 2012 Phys. Rev. B 85 064111
[33] Zhang Y G, You Y W, Li D D, Xu Y C, Liu C S, Pan B C and Wang Z G 2015 Phys. Chem. Chem. Phys. 17 12292
[34] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[35] Chen L, Li Y F, Zheng Q L, Liu Q K, Gao Y M, Li B and Zhou C M 2019 Acta Phys. Sin. 68 053101 (in Chinese)
[36] Shu Y, Zhang Y and Zhang J M 2012 Acta Phys. Sin. 61 016108 (in Chinese)
[37] Liu K, Wang F H and Shang J X 2017 Acta Phys. Sin. 66 216801 (in Chinese)
[38] Ossowski T and Kiejna A 2015 Surf. Sci. 637 35
[39] Shimada T, Ishii Y and Kitamura T 2010 Phys. Rev. B 81 134420
[40] Ma J X, Jia Y, Liang E J, Wang X C, Wang F and Hu X 2003 Acta Phys. Sin. 52 3155 (in Chinese)
[41] Song C, Li D D, Xu Y C, Pan B C, Liu C S and Wang Z G 2014 Chin. Phys. B 23 056801
[42] Xu Y C, Song C, Zhang Y G, Liu C S, Pan B C and Wang Z G 2014 Phys. Chem. Chem. Phys. 16 16837
[43] Zhang F C, Liu Y and Zhang W B 2015 Chin. Phys. Lett. 32 057302
[44] Chen Y H, Cao Y J and Ren B X 2010 Acta Phys. Sin. 59 8015 (in Chinese)
[45] Wu X X, Wang Q E, Wang F H and Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese)
[46] Fang C H, Shang J X and Liu Z H 2012 Acta Phys. Sin. 61 047101 (in Chinese)
[47] Xiong H H, Liu Z, Zhang H H, Zhou Y and Yu Y 2017 Acta Phys. Sin. 66 168101 (in Chinese)
[48] Wei Y W and Yang Z X 2008 Acta Phys. Sin. 57 7139 (in Chinese)
[49] Yang Y, Liu F C and Kawazoe Y 2018 Chin. Phys. B 27 106801
[50] Liu C G, Yu L M, Liu Y C, Ma Z Q, Li H J, Li C and Liu C X 2020 AIP Adv. 10 025309
[51] Błoński P and Kiejna A 2007 Surf. Sci. 601 123
[52] Tan X, Zhou J and Peng Y 2012 Appl. Surf. Sci. 258 8484
[53] Spencer J S, Snook I K and Yarovsky I 2002 Surf. Sci. 513 389
[54] Błoński P, Kiejna A and Hafner J 2008 Phys. Rev. B 77 155424
[55] Bader R F W 1990 Atoms in Molecules:A Quantum Theory, 1nd Edn. (New York:Oxford University Press) pp. 78-85
[56] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[57] Sun M and Wang C Y 2016 Chin. Phys. B 25 067104
[58] Stefano D D, Nazarov R, Hickel T, Neugebauer J, Mrovec M and Elsasser C 2016 Phys. Rev. B 93 184108
[59] McLean D 1957 Grain Boundaries in Metals (Oxford:Clarendon Press) pp. 116-121
[60] Lejcek P 2010 Grain Boundary Segregation in Metals (Berlin:Springer) pp. 51-81
[1] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
[2] Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃
Ligang Song(宋力刚), Bo Huang(黄波), Jianghua Li(李江华), Xianfeng Ma(马显锋), Yang Li(李阳), Zehua Fang(方泽华), Min Liu(刘敏), Jishen Jiang(蒋季伸), and Yanying Hu(胡琰莹). Chin. Phys. B, 2021, 30(8): 086103.
[3] First-principles study of helium clustering at initial stage in ThO2
Kuan Shao(邵宽), Han Han(韩晗), Wei Zhang(张伟), Chang-Ying Wang(王昌英), Yong-Liang Guo(郭永亮), Cui-Lan Ren(任翠兰), Ping Huai(怀平). Chin. Phys. B, 2017, 26(9): 097101.
[4] First principles investigation of protactinium-based oxide-perovskites for flexible opto—electronic devices
Nazia Erum, Muhammad Azhar Iqbal. Chin. Phys. B, 2017, 26(4): 047102.
[5] First-principles study on nonlocal ferromagnetism in (Cu, N)-codoped ZnO
Qin Guo-Ping (秦国平), Wang Xin-Qiang (王新强), Zheng Ji (郑继), Kong Chun-Yang (孔春阳), Ruan Hai-Bo (阮海波), Li Wan-Jun (李万俊), Zhao Yong-Hong (赵永红), Meng Xiang-Dan (孟祥丹). Chin. Phys. B, 2013, 22(5): 057101.
[6] The effects of fast neutron irradiation on oxygen in Czochralski silicon
Chen Gui-Feng(陈贵锋), Yan Wen-Bo(阎文博), Chen Hong-Jian(陈洪建), Li Xing-Hua(李兴华), and Li Yang-Xian(李养贤). Chin. Phys. B, 2009, 18(1): 293-297.
No Suggested Reading articles found!