CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure |
Na Li(李娜)1,2, Jin Tang(汤进)1,2, Lei Su(苏磊)1,2, Ya-Jiao Ke(柯亚娇)1,2, Wei Zhang(张伟)1,2, Zong-Kai Xie(谢宗凯)1,2, Rui Sun(孙瑞)1,2, Xiang-Qun Zhang(张向群)1, Wei He(何为)1, and Zhao-Hua Cheng(成昭华)1,2,3,† |
1 State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We investigate the ultrafast spin dynamics of an antiferromagnet in a ferromagnet/antiferromagnet heterostructure Fe/GdFeO3 via an all-optical method. After laser irradiation, the terahertz spin precession is hard to be excited in a bare GdFeO3 without spin reorientation phase but efficiently in Fe/GdFeO3. Both quasi-ferromagnetic and impurity modes, as well as a phonon mode, are observed. We attribute it to the optical modification of interfacial exchange coupling between Fe and GdFeO3. Moreover, the excitation efficiency of dynamics can be modified significantly via the pump laser influence. Our results elucidate that the interfacial exchange coupling is a feasible stimulation to efficiently excite terahertz spin dynamics in antiferromagnets. It will expand the exploration of terahertz spin dynamics for antiferromagnet-based opto-spintronic devices.
|
Received: 16 March 2021
Revised: 27 March 2021
Accepted manuscript online: 31 March 2021
|
PACS:
|
75.78.Jp
|
(Ultrafast magnetization dynamics and switching)
|
|
75.78.-n
|
(Magnetization dynamics)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
Fund: Project supported by the National Key Research Program of China (Grant Nos. 2018YFF01010303, 2017YFB0702702, and 2016YFA0300701), the National Natural Sciences Foundation of China (Grant Nos. 52031015, 1187411, 51427801, and 51871235), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant Nos. QYZDJ-SSW-JSC023, KJZD-SW-M01, and ZDYZ2012-2). |
Corresponding Authors:
Zhao-Hua Cheng
E-mail: zhcheng@iphy.ac.cn
|
Cite this article:
Na Li(李娜), Jin Tang(汤进), Lei Su(苏磊), Ya-Jiao Ke(柯亚娇), Wei Zhang(张伟), Zong-Kai Xie(谢宗凯), Rui Sun(孙瑞), Xiang-Qun Zhang(张向群), Wei He(何为), and Zhao-Hua Cheng(成昭华) Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure 2021 Chin. Phys. B 30 117502
|
[1] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 [2] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231 [3] Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A and Huber R 2010 Nat. Photon. 5 31 [4] Jungfleisch M B, Zhang W and Hoffmann A 2018 Phys. Lett. A 382 865 [5] White R L 1969 J. Appl. Phys. 40 1061 [6] Mikhaylovskiy R V, Hendry E, Secchi A, Mentink J H, Eckstein M, Wu A, Pisarev R V, Kruglyak V V, Katsnelson M I, Rasing Th and Kimel A V 2015 Nat. Commun. 6 8190 [7] Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V and Rasing Th 2004 Nature 429 850 [8] Němec P, Fiebig M, Kampfrath T and Kimel A V 2018 Nat. Phys. 14 229 [9] Kimel A V, Stanciu C D, Usachev P A, Pisarev R V, Gridnev V N, Kirilyuk A and Rasing Th 2009 Phys. Rev. B 74 060403 [10] Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A and Rasing Th 2009 Nat. Phys. 5 727 [11] Ren Z, Cheng L, Sergei G, Nadzeya L, Li J T, Shang J M, Sergei B, Wu A H, Alexandra K, Ma Z W, Zhou C and Sheng Z G 2020 Acta Phys. Sin. 69 207802 (in Chinese) [12] Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M and Rasing Th 2005 Nature 435 655 [13] Afanasiev D, Hortensius J R, Ivanov B A, Sasani A, Bousquet E, Blanter Y M, Mikhaylovskiy R V, Kimel A V and Caviglia A D 2021 Nat. Mater. 10 1038 [14] Sheu Y M, Ogawa N, Tokunaga Y, Chan H C and Tokura Y 2018 Phys. Rev. B 98 100301 [15] Tang J, Ke Y, He W, Zhang X, Zhang W, Li N, Zhang Y, Li Y and Cheng Z 2018 Adv. Mater. 30 1706439 [16] Su L, Zhang X Q, Dong Q Y, Ke Y, Hou K, Yang H and Cheng Z 2019 Physica B 575 411687 [17] Cashion J D, Cooke A H, Martin D M and Wells M R 1970 J. Phys. C: Solid State Phys. 3 1612 [18] Risman P 2009 Development of Packaging and Products for Use in Microwave Ovens (Cambridge: Woodhead) pp. 153-175 [19] Nogues J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203 [20] Körner H S, Schoen M A W, Mayer T, Decker M M, Stigloher J, Weindler T, Meier T N G, Kronseder M and Back C H 1996 Phys. Rev. Lett. 10 4624 [21] Tang J, Ke Y, He W, Zhang X, Zhang Y, Zhang W, Li Y, Ahmad S and Cheng Z 2017 J. Phys. D: Appl. Phys. 50 205001 [22] De Jong J A, Kimel A V, Pisarev R V, Kirilyuk A and Rasing Th 2011 Phys. Rev. B 84 104421 [23] Mao S W, Lu J, Yang L, Ruan X Z, Wang H L, Wei D H, Xu Y B and Zhao J H 2020 Chin. Phys. Lett. 37 058501 [24] Kabos P 1995 High Frequency Processes in Magnetic Materials (Singapore: World Scientific) pp. 164-199 [25] Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H and Yao J Q 2019 Acta. Phys. Sin. 68 167501 (in Chinese) [26] Mikhaylovskiy R V, Hendry E, Kruglyak V V, Pisarev R V, Rasing Th and Kimel A V 2014 Phys. Rev. B 90 184485 [27] Reid A H M, Rasing Th, Pisarev R V, Dürr H A and Hoffmann M C 2015 Appl. Phys. Lett. 106 082403 [28] Kalashnikova A M, Kimel A V, Pisarev R V, Gridnev V N, Usachev P A, Kirilyuk A and Rasing Th 2008 Phys. Rev. B 78 104301 [29] Shapiro S M, Axe J D and Remeika J P 1974 Phys. Rev. B 10 2014 [30] Usachev P A, Pisarev R V, Balbashov A M, Kimel A V, Kirilyuk A and Rasing Th 2005 Phys. Solid State 47 2292 [31] Husain S, Keelani A O A and Khan W 2018 Nano-Struct. Nano-Objects 15 17 [32] Li H and Zhang X H 2015 Chin. Phys. Lett. 32 067501 [33] Ma X, Fang F, Li Q, Zhu J, Yang Y, Wu Y Z, Zhao H B and Lupke G 2015 Nat. Commun. 6 8800 [34] Saidl V, Němec P, Wadley P, Edmonds K W, Campion R P, Novák V, Gallagher B L, Trojánek F and Jungwirth T 2017 Phys. State Solids RRL 11 1600441 [35] Zheng Z, Li Q, Shi J Y, Gu T, Wang Z Y, Shen L Q, Jin F, Yuan H C, Zhang R J, Chen L Y, Wu Y Z and Zhao H B 2017 Appl. Phys. Lett. 110 172401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|