Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117502    DOI: 10.1088/1674-1056/abf3b7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure

Na Li(李娜)1,2, Jin Tang(汤进)1,2, Lei Su(苏磊)1,2, Ya-Jiao Ke(柯亚娇)1,2, Wei Zhang(张伟)1,2, Zong-Kai Xie(谢宗凯)1,2, Rui Sun(孙瑞)1,2, Xiang-Qun Zhang(张向群)1, Wei He(何为)1, and Zhao-Hua Cheng(成昭华)1,2,3,†
1 State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We investigate the ultrafast spin dynamics of an antiferromagnet in a ferromagnet/antiferromagnet heterostructure Fe/GdFeO3 via an all-optical method. After laser irradiation, the terahertz spin precession is hard to be excited in a bare GdFeO3 without spin reorientation phase but efficiently in Fe/GdFeO3. Both quasi-ferromagnetic and impurity modes, as well as a phonon mode, are observed. We attribute it to the optical modification of interfacial exchange coupling between Fe and GdFeO3. Moreover, the excitation efficiency of dynamics can be modified significantly via the pump laser influence. Our results elucidate that the interfacial exchange coupling is a feasible stimulation to efficiently excite terahertz spin dynamics in antiferromagnets. It will expand the exploration of terahertz spin dynamics for antiferromagnet-based opto-spintronic devices.
Keywords:  ultrafast magnetization dynamics      antiferromagnetics      magnetic oxides      magnetization dynamics  
Received:  16 March 2021      Revised:  27 March 2021      Accepted manuscript online:  31 March 2021
PACS:  75.78.Jp (Ultrafast magnetization dynamics and switching)  
  75.78.-n (Magnetization dynamics)  
  75.50.Ee (Antiferromagnetics)  
  75.47.Lx (Magnetic oxides)  
Fund: Project supported by the National Key Research Program of China (Grant Nos. 2018YFF01010303, 2017YFB0702702, and 2016YFA0300701), the National Natural Sciences Foundation of China (Grant Nos. 52031015, 1187411, 51427801, and 51871235), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant Nos. QYZDJ-SSW-JSC023, KJZD-SW-M01, and ZDYZ2012-2).
Corresponding Authors:  Zhao-Hua Cheng     E-mail:  zhcheng@iphy.ac.cn

Cite this article: 

Na Li(李娜), Jin Tang(汤进), Lei Su(苏磊), Ya-Jiao Ke(柯亚娇), Wei Zhang(张伟), Zong-Kai Xie(谢宗凯), Rui Sun(孙瑞), Xiang-Qun Zhang(张向群), Wei He(何为), and Zhao-Hua Cheng(成昭华) Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure 2021 Chin. Phys. B 30 117502

[1] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
[2] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231
[3] Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A and Huber R 2010 Nat. Photon. 5 31
[4] Jungfleisch M B, Zhang W and Hoffmann A 2018 Phys. Lett. A 382 865
[5] White R L 1969 J. Appl. Phys. 40 1061
[6] Mikhaylovskiy R V, Hendry E, Secchi A, Mentink J H, Eckstein M, Wu A, Pisarev R V, Kruglyak V V, Katsnelson M I, Rasing Th and Kimel A V 2015 Nat. Commun. 6 8190
[7] Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V and Rasing Th 2004 Nature 429 850
[8] Němec P, Fiebig M, Kampfrath T and Kimel A V 2018 Nat. Phys. 14 229
[9] Kimel A V, Stanciu C D, Usachev P A, Pisarev R V, Gridnev V N, Kirilyuk A and Rasing Th 2009 Phys. Rev. B 74 060403
[10] Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A and Rasing Th 2009 Nat. Phys. 5 727
[11] Ren Z, Cheng L, Sergei G, Nadzeya L, Li J T, Shang J M, Sergei B, Wu A H, Alexandra K, Ma Z W, Zhou C and Sheng Z G 2020 Acta Phys. Sin. 69 207802 (in Chinese)
[12] Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M and Rasing Th 2005 Nature 435 655
[13] Afanasiev D, Hortensius J R, Ivanov B A, Sasani A, Bousquet E, Blanter Y M, Mikhaylovskiy R V, Kimel A V and Caviglia A D 2021 Nat. Mater. 10 1038
[14] Sheu Y M, Ogawa N, Tokunaga Y, Chan H C and Tokura Y 2018 Phys. Rev. B 98 100301
[15] Tang J, Ke Y, He W, Zhang X, Zhang W, Li N, Zhang Y, Li Y and Cheng Z 2018 Adv. Mater. 30 1706439
[16] Su L, Zhang X Q, Dong Q Y, Ke Y, Hou K, Yang H and Cheng Z 2019 Physica B 575 411687
[17] Cashion J D, Cooke A H, Martin D M and Wells M R 1970 J. Phys. C: Solid State Phys. 3 1612
[18] Risman P 2009 Development of Packaging and Products for Use in Microwave Ovens (Cambridge: Woodhead) pp. 153-175
[19] Nogues J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203
[20] Körner H S, Schoen M A W, Mayer T, Decker M M, Stigloher J, Weindler T, Meier T N G, Kronseder M and Back C H 1996 Phys. Rev. Lett. 10 4624
[21] Tang J, Ke Y, He W, Zhang X, Zhang Y, Zhang W, Li Y, Ahmad S and Cheng Z 2017 J. Phys. D: Appl. Phys. 50 205001
[22] De Jong J A, Kimel A V, Pisarev R V, Kirilyuk A and Rasing Th 2011 Phys. Rev. B 84 104421
[23] Mao S W, Lu J, Yang L, Ruan X Z, Wang H L, Wei D H, Xu Y B and Zhao J H 2020 Chin. Phys. Lett. 37 058501
[24] Kabos P 1995 High Frequency Processes in Magnetic Materials (Singapore: World Scientific) pp. 164-199
[25] Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H and Yao J Q 2019 Acta. Phys. Sin. 68 167501 (in Chinese)
[26] Mikhaylovskiy R V, Hendry E, Kruglyak V V, Pisarev R V, Rasing Th and Kimel A V 2014 Phys. Rev. B 90 184485
[27] Reid A H M, Rasing Th, Pisarev R V, Dürr H A and Hoffmann M C 2015 Appl. Phys. Lett. 106 082403
[28] Kalashnikova A M, Kimel A V, Pisarev R V, Gridnev V N, Usachev P A, Kirilyuk A and Rasing Th 2008 Phys. Rev. B 78 104301
[29] Shapiro S M, Axe J D and Remeika J P 1974 Phys. Rev. B 10 2014
[30] Usachev P A, Pisarev R V, Balbashov A M, Kimel A V, Kirilyuk A and Rasing Th 2005 Phys. Solid State 47 2292
[31] Husain S, Keelani A O A and Khan W 2018 Nano-Struct. Nano-Objects 15 17
[32] Li H and Zhang X H 2015 Chin. Phys. Lett. 32 067501
[33] Ma X, Fang F, Li Q, Zhu J, Yang Y, Wu Y Z, Zhao H B and Lupke G 2015 Nat. Commun. 6 8800
[34] Saidl V, Němec P, Wadley P, Edmonds K W, Campion R P, Novák V, Gallagher B L, Trojánek F and Jungwirth T 2017 Phys. State Solids RRL 11 1600441
[35] Zheng Z, Li Q, Shi J Y, Gu T, Wang Z Y, Shen L Q, Jin F, Yuan H C, Zhang R J, Chen L Y, Wu Y Z and Zhao H B 2017 Appl. Phys. Lett. 110 172401
[1] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[2] Spin transport in antiferromagnetic insulators
Zhiyong Qiu(邱志勇), Dazhi Hou(侯达之). Chin. Phys. B, 2019, 28(8): 088504.
[3] Micromagnetism simulation on effects of soft phase size on Nd2Fe14B/α–Fe nanocomposite magnet with soft phase imbedded in hard phase
Yu-Qing Li(李玉卿), Ming Yue(岳明), Yi Peng(彭懿), Hong-Guo Zhang(张红国). Chin. Phys. B, 2018, 27(8): 087502.
[4] High frequency magnetic properties of ferromagnetic thin films and magnetization dynamics of coherent precession
Jiang Chang-Jun (蒋长军), Fan Xiao-Long (范小龙), Xue De-Sheng (薛德胜). Chin. Phys. B, 2015, 24(5): 057504.
[5] Al-doping-induced magnetocapacitance in the multiferroic CuCrS2
Liu Rong-Deng (刘荣灯), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Wang Fang-Wei (王芳卫). Chin. Phys. B, 2013, 22(2): 027507.
[6] The synthesis and exchange bias effect of monodisperse NiO nanocrystals
Duan Han-Ning(段寒凝), Yuan Song-Liu(袁松柳), Zheng Xian-Feng(郑先锋), and Tian Zhao-Ming(田召明) . Chin. Phys. B, 2012, 21(7): 078101.
[7] Role of defects in magnetic properties of Fe-doped SnO2 films fabricated by the Sol--Gel method
Zhou Xue-Yun(周雪云), Ge Shi-Hui(葛世慧), Han Xiu-Feng(韩秀峰), Zuo Ya-Lu(左亚路), Xiao Yu-Hua(肖玉华), Wen Zhen-Chao(温振超), Zhang Li(张莉), and Li Ming-Jie(李明杰). Chin. Phys. B, 2009, 18(9): 4025-4029.
No Suggested Reading articles found!