Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 103101    DOI: 10.1088/1674-1056/26/10/103101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Correlation between electronic structure and energy band in Eu-doped CuInTe2 semiconductor compound with chalcopyrite structure

Tai Wang(王泰), Yong-Quan Guo(郭永权), Shuai Li(李帅)
School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
Abstract  The Eu-doped Cu(In, Eu)Te2 semiconductors with chalcopyrite structures are promising materials for their applications in the absorption layer for thin-film solar cells due to their wider band-gaps and better optical properties than those of CuInTe2. In this paper, the Eu-doped CuInTe2 (CuIn1-xEuxTe2, x=0, 0.1, 0.2, 0.3) are studied systemically based on the empirical electron theory (EET). The studies cover crystal structures, bonding regularities, cohesive energies, energy levels, and valence electron structures. The theoretical values fit the experimental results very well. The physical mechanism of a broadened band-gap induced by Eu doping into CuInTe2 is the transitions between different hybridization energy levels induced by electron hopping between s and d orbitals and the transformations from the lattice electrons to valence electrons for Cu and In ions. The research results reveal that the photovoltaic effect induces the increase of lattice electrons of In and causes the electric resistivity to decrease. The Eu doping into CuInTe2 mainly influences the transition between different hybridization energy levels for Cu atoms, which shows that the 3d electron numbers of Cu atoms change before and after Eu doping. In single phase CuIn1-xEuxTe2, the number of valence electrons changes regularly with increasing Eu content, and the calculated band gap Eg also increases, which implies that the optical properties of Eu-doped CuIn1-xEuxTe2 are improved.
Keywords:  CuIn1-xEuxTe2      EET      solar cells      valence electronic structures      band gap  
Received:  05 April 2017      Revised:  15 June 2017      Accepted manuscript online: 
PACS:  31.15.bu (Semi-empirical and empirical calculations (differential overlap, Hückel, PPP methods, etc.))  
  88.40.jn (Thin film Cu-based I-III-VI2 solar cells)  
  88.40.H- (Solar cells (photovoltaics))  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.1 1274110).
Corresponding Authors:  Yong-Quan Guo     E-mail:  yqguo@ncepu.edu.cn

Cite this article: 

Tai Wang(王泰), Yong-Quan Guo(郭永权), Shuai Li(李帅) Correlation between electronic structure and energy band in Eu-doped CuInTe2 semiconductor compound with chalcopyrite structure 2017 Chin. Phys. B 26 103101

[1] Abo El Soud A M, Zayed H A and Soliman L I 1993 Thin Solid Films 229 232
[2] Bhattacharya R N and Rajeshwar K 1986 Solar Cells 16 237
[3] Gonzalez J and Rincón C 1990 J. Phys. Chem. Solids 51 1093.
[4] Hörig W, Neumann H and Godmanis I 1980 Solid State Commun. 36 181
[5] Kazmerski L L and Shieh C C 1977 Thin Solid Films 41 35
[6] Cao M, Men C L, Zhu D M, et al. 2013 Chin. Phys. B 22 107803
[7] Gu Y N, Xu S and Wu X S 2016 Chin. Phys. B 25 123103
[8] Sugan S, Baskar K and Dhanasekaran R 2014 Curr. Appl. Phys. 14 1416
[9] Bagci S, Yalcin B G, Aliabad H A R, Duman S and Salmankurt B 2016 Rsc Adv. 6 59527
[10] Boustani M, El Assali K, Bekkay T and Khiara A 1997 Solar Energy Mater. Solar Cells 45 369
[11] Hadi Zarei and Rasoul Malekfar 2016 Chin. Phys. B 25 027103
[12] Merabet B, Alamri H, Djermouni M, Zaoui A, Kacimi S, Boukortt A, et al. 2017 Chin. Phys. Lett. 34 016101
[13] Lakhe M and Chaure N B 2014 Solar Energy Mater. Solar Cells 123 122
[14] Mahalingam T, Thanikaikarasan S, Sanjeeviraja C, Kim T, Sebastian P J and Kim Y D 2010 J. New Mater. Electrochem. Syst. 13 77
[15] Mise T and Nakada T 2012 J. Vac. Sci. Technol. A 30 324
[16] Fu L and Guo Y Q 2014 Chin. Phys. B 23 127801
[17] Valeri-Gil M L and Rincón C 1993 Mater. Lett. 17 59
[18] Cheng N, Liu R, Bai S, Shi X and Chen L 2014 J. Appl. Phys. 115 894
[19] Hervé P and Vandamme L K J 1994 Infr. Phys. Technol. 35 609
[20] Mitzi D B, Copel M and Murray C E 2006 Adv. Mater. 18 2448
[21] Orts J L, Diaz R, Herrasti P, Rueda F and Fatas E 2007 Solar Energy Mater. Solar Cells 91 621
[22] Mi S 2009"Study on Semiconductor CuXTe2 (X=Ga, In) and ZnGa2X4 (X=S, Se) based on first principle", MS. Ddissertation (Taiyuan:Shanxi University) (in Chinese)
[23] Li Y P, Meng Q S, Deng Y, Zhou H, Gao Y L, Li Y Y, et al. 2012 Appl. Phys. Lett. 100 231903
[24] Aissaoui O, Mehdaoui S, Bechiri L, Benabdeslem M, Benslim N, Amara A, et al. 2011 J. Lumin. 131 109
[25] Nie X M and Guo Y Q 2016 J. Solid State Chem. 233 211
[26] Sanad M M S, Rashad M M and Shenouda A Y 2016 Int. J. Electrochem. Sci. 11 4337
[27] Yu R H 1978 China Academic Journal Electronic Publishing House 23 217(in Chinese)
[28] Meng Z H, Fu L, Mei J, et al. 2013 Sci. Sin.-Phys. Mech. Astron. 43 275
[29] Wu W X, Guo Y Q, Li A H and Li W 2008 Acta Phys. Sin. 57 2486(in Chinese)
[30] Guo Y Q, Yu R H, Zhang R L, et al. 1998 J. Phys. Chem. B 102 9
[31] Li Z L, Xu H B and Gong S K 2004 J. Phys. Chem. B 108 15165
[32] Lu J Z snd Wang S K 1979 China Academic Journal Electronic Publishing House 24 724(in Chinese)
[33] Meng Z H, Li J B, Guo Y Q and Wang Y 2012 Acta Phys. Sin. 61 107101(in Chinese)
[34] Zhang R L 1993 The Empirical Electron Theory of Solids and Molecules (Changchun:Jilin Science and Technology Press) (in Chinese)
[1] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[2] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[3] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[4] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[5] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[6] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[7] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[8] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[9] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[10] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[11] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[12] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[13] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[14] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
[15] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
No Suggested Reading articles found!