CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Growth, characterization, and Raman spectra of the 1T phases of TiTe2, TiSe2, and TiS2 |
Xiao-Fang Tang(唐筱芳)1,2,3, Shuang-Xing Zhu(朱双兴)3,†, Hao Liu(刘豪)3, Chen Zhang(章晨)3, Qi-Yi Wu(吴旗仪)3, Zi-Teng Liu(刘子腾)3, Jiao-Jiao Song(宋姣姣)3, Xiao Guo(郭晓)3, Yong-Song Wang(王永松)3, He Ma(马赫)4, Yin-Zou Zhao(赵尹陬)3, Fan-Ying Wu(邬钒颖)3, Shu-Yu Liu(刘姝妤)3, Kai-Hui Liu(刘开辉)4, Ya-Hua Yuan(袁亚华)3, Han Huang(黄寒)3, Jun He(何军)3, Wen Xu(徐文)1, Hai-Yun Liu(刘海云)5, Yu-Xia Duan(段玉霞)3, and Jian-Qiao Meng(孟建桥)3,‡ |
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 School of Physics and Electronics, Central South University, Changsha 410083, China; 4 State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China; 5 Beijing Academy of Quantum Information Sciences, Beijing 100085, China |
|
|
Abstract High-quality large 1$T$ phase of Ti$X_2$ ($X ={\rm Te}$, Se, and S) single crystals have been grown by chemical vapor transport using iodine as a transport agent. The samples are characterized by compositional and structural analyses, and their properties are investigated by Raman spectroscopy. Several phonon modes have been observed, including the widely reported $A_{1g}$ and $E_g$ modes, the rarely reported $E_u$ mode ($\sim$183 cm$^{-1}$ for TiTe$_2$, and $\sim$185 cm$^{-1}$ for TiS$_2$), and even the unexpected $K$ mode ($\sim$85 cm$^{-1}$) of TiTe$_2$. Most phonons harden with the decrease of temperature, except that the $K$ mode of TiTe$_2$ and the $E_u$ and "$A_{2u}$/Sh" modes of TiS$_2$ soften with the decrease of temperature. In addition, we also found phonon changes in TiSe$_2$ that may be related to charge density wave phase transition. Our results on Ti$X_2$ phonons will help to understand their charge density wave and superconductivity.
|
Received: 20 August 2021
Revised: 11 October 2021
Accepted manuscript online: 18 October 2021
|
PACS:
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
63.20.D-
|
(Phonon states and bands, normal modes, and phonon dispersion)
|
|
81.10.Bk
|
(Growth from vapor)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074436 and U1930116) and the Innovation-driven Plan in Central South University (Grant No. 2016CXS032). |
Corresponding Authors:
Shuang-Xing Zhu, Jian-Qiao Meng
E-mail: 182211030@csu.edu.cn;jqmeng@csu.edu.cn
|
Cite this article:
Xiao-Fang Tang(唐筱芳), Shuang-Xing Zhu(朱双兴), Hao Liu(刘豪), Chen Zhang(章晨), Qi-Yi Wu(吴旗仪), Zi-Teng Liu(刘子腾), Jiao-Jiao Song(宋姣姣), Xiao Guo(郭晓), Yong-Song Wang(王永松), He Ma(马赫), Yin-Zou Zhao(赵尹陬), Fan-Ying Wu(邬钒颖), Shu-Yu Liu(刘姝妤), Kai-Hui Liu(刘开辉), Ya-Hua Yuan(袁亚华), Han Huang(黄寒), Jun He(何军), Wen Xu(徐文), Hai-Yun Liu(刘海云), Yu-Xia Duan(段玉霞), and Jian-Qiao Meng(孟建桥) Growth, characterization, and Raman spectra of the 1T phases of TiTe2, TiSe2, and TiS2 2022 Chin. Phys. B 31 037103
|
[1] Hsu Y, Vaezi A, Fischer M H and Kim E 2017 Nat. Commun. 8 14985 [2] Hsu Y, Cole W S, Zhang R and Sau J D 2020 Phys. Rev. Lett. 125 097001 [3] Valla T, Fedorov A V, Johnson P D, Glans P, Mcguinness C, Smith K E, Andrei E Y and Berger H 2004 Phys. Rev. Lett. 92 086401 [4] Chen P, Pai W W, Chan Y H, Takayama A, Xu C Z, Karn A, Hasegawa S, Chou M Y, Mo S K, Fedorov A V and Chiang T C 2017 Nat. Commun. 8 516 [5] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205 [6] Liu Y, Zhao J, Yu L, Lin C, Liang A, Hu C, Ding Y, Xu Y, He S, Zhao L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Weng H, Dai X, Fang Z and Zhou X J 2015 Chin. Phys. Lett. 32 67303 [7] Liu Y, Zhao J, Yu L, Lin C, Hu C, Liu D, Peng Y, Xie Z, He J, Chen C, Feng Y, Yi H, Liu X, Zhao L, He S, Liu G, Dong X, Zhang J, Chen C, Xu Z, Weng H, Dai X, Fang Z and Zhou X J 2015 Chin. Phys. B 24 067401 [8] Absor M A U, Santoso I, Yamaguchi N and Ishii F 2020 Phys. Rev. B 101 155410 [9] Chernozatonskii L A and Artyukh A A 2018 Physics Uspekhi 61 2 [10] Naylor C H, Parkin W M, Ping J L, Gao Z L, Zhou Y R, Kim Y, Streller F, Carpick R W, Rappe A M, Drndić M, Kikkawa J M and Johnson A T C 2016 Nano Lett. 16 4297 [11] Tang X F, Duan Y X, Wu F Y, Liu S Y, Zhang C, Zhao Y Z, Song J J, Luo Y, Wu Q Y, He J, Xu W and Meng J Q 2019 Phys. Rev. B 99 125112 [12] Zhu S X, Zhang C, Wu Q Y, Tang X F, Liu H, Liu Z T, Luo Y, Song J J, Wu F Y, Zhao Y Z, Liu S Y, Le T, Lu X, Ma H, Liu K H, Yuan Y H, Huang H, He J, Liu H Y, Duan Y X and Meng J Q 2021 Phys. Rev. B 103 115108 [13] Lin M K, Hlevyack A J, Chen P, Liu R Y, Mo S K and Chiang T C 2020 Phys. Rev. Lett. 125 176405 [14] Xu S Y, Ma Q, Gao Y, Koga, Zong A, Mier V, Andrés M, Dinh T H, Huang S M, Singh B, Hsu C H, Chang T R, Ruff J P C, Watanabe K, Taniguchi T, Lin H, Karapetrov G, Xiao D, Jarillo-Herrero P and Gedik N 2020 Nature 578 545 [15] Lian C, Zhang S J, Hu S Q, Guan M X and Meng S 2020 Nat. Commun. 11 43 [16] Jaouen T, Rumo M, Hildebrand B, Mottas M L, Nicholson C W, Kremer G, Salzmann B, Vanini F, Barreteau C, Giannini E, Beck H, Aebi P and Monne C 2019 arXiv:1911.06053 [17] Parvaz M, Salah N and Khan Z H 2020 Optik 207 163810 [18] Ivanovskaya V V and Seifert G 2004 Solid State Commun. 130 175 [19] Liu B, Yang J, Han Y H, Hu T J, Ren W B, Liu C L, Ma Y Z and Gao C X 2011 J. Appl. Phys. 109 053717 [20] de Boer D K G, van Bruggen C F, Bus G W, Coehoorn R, Haas C, Sawatzky G A, Myron H W, Norman D and Padmore H 1984 Phys. Rev. B 29 6797 [21] Dutta U, Malavi P S, Sahoo S, Joseph B and Karmakar S 2018 Phys. Rev. B 97 060503 [22] Fragkos S, Sant R, Alvarez C, Bosak A, Tsipas P, Tsoutsou D, Okuno H, Renaud G and Dimoulas A 2019 Adv. Mater. Interfaces 6 1801850 [23] Kusmartseva A F, Sipos B, Berger H, Forr O L and Tuti Ifmmode Check S Else V S Fi E 2009 Phys. Rev. Lett. 103 236401 [24] Joe Y I, Chen X M, Ghaemi P, Finkelstein K D, de la Pena G A, Gan Y, Lee J C T, Yuan S, Geck J, Macdougall G J, Chiang T C, Cooper S L, Fradkin E and Abbamonte P 2014 Nat. Phys. 10 421 [25] Sugawara K, Nakata Y, Shimizu R, Han P, Hitosugi T, Sato T and Takahashi T 2015 ACS Nano 10 1341 [26] Chen P, ChanY H, Fang X Y, Zhang Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V and Chiang T C 2015 Nat. Commun. 6 8943 [27] Fang X Y, Hong H, Chen P and Chiang T C 2017 Phys. Rev. B 95 201409 [28] Calandra M and Mauri F 2011 Phys. Rev. Lett. 106 196406 [29] Hedayat H, Sayers C J, Bugini D, Dallera C, Wolverson D, Batten T, Karbassi S, Friedemann S, Cerullo G, van Wezel J, Clark S R, Carpene E and Da E C 2019 Phys. Rev. Research 1 023029 [30] Liao J, Zhao Y, Zhao Y, Yang X and Chen Y 2020 J. Appl. Phys. 127 044301 [31] Zhang M, Wang X, Rahman A, Zeng Q, Huang D, Dai R, Wang Z and Zhang Z 2018 Appl. Phys. Lett. 112 041907 [32] Liu W, Luo A, Zhong G, Zou J and Xu G 2021 arXiv:2105.01328v1 [33] Zhu Z Y, Cheng Y and Schwingenschlögl U 2015 Sci. Rep. 4 4025 [34] Liu S Y, Zhu S X, Wu Q Y, Zhang C, Song P B, Shi Y G, Liu H, Liu Z T, Song J J, Wu F Y, Zhao Y Z, Tang X F, Yuan Y H, Huang H, He J, Liu H Y, Duan Y X and Meng J Q 2021 Results in Physics 30 104816 [35] Al-Alamy F A S and Balchin A A 1977 J. Cryst. Growth 38 221 [36] Ding H and Xu B 2012 J. Chem. Phys. 137 224509 [37] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V and Narayana C 2018 Phys. Rev. B 97 085107 [38] Hangyo M, Nakashima S and Mitsuishi A 1983 Ferroelectrics 52 151 [39] Xiao R C, Lu W J, Shao D F, Li J Y, Wei M J, Lv H Y, Tong P, Zhu X B and Sun Y P 2017 J. Mater. Chem. C 5 4167 [40] Goli P, Khan J, Wickramaratne D, Lake R K and Balandin A A 2012 Nano Lett. 12 5941 [41] Samnakay R, Wickramaratne D, Pope T R, Lake R K, Salguero T T and Balandin A A 2015 Nano Lett. 15 2965 [42] Albertini O R, Zhao R, Mccann R L, Feng S, Terrones M, Freericks J K, Robinson J A and Liu A Y 2016 Phys. Rev. B 93 214109 [43] Holy J A, Woo K C, Klein M V and Brown F C 1977 Phys. Rev. B 16 3628 [44] Catlow C R A and Kotomin E A 2003 Computational Materials Science (Amsterdam:IOS Press) [45] Wang H, Chen Y, Duchamp M, Zeng Q, Wang X, Tsang S H, Li H, Jing L, Yu T, Teo E H T and Liu Z 2018 Adv. Mater. 30 1704382 [46] Snow C S, Karpus J F, Cooper S L, Kidd T E and Chiang T C 2003 Phys. Rev. Lett. 91 136402 [47] Sandoval S J, Chen X K and Irwin J C 1992 Phys. Rev. B 45 14347 [48] Dużyńska A, Judek J, Wilczyński K, Zberecki K, Lapińska A, Wróblewska A and Zdrojek M 2019 J. Raman Spectrosc. 50 1 [49] Sherrell P C, Sharda K, Grotta C, Ranalli J, Sokolikova M S, Pesci F M, Palczynski P, Bemmer V L and Mattevi C 2018 ACS Omega 3 8655 [50] Lin C, Zhu X, Feng J, Wu C, Hu S, Peng J, Guo Y, Peng L, Zhao J, Huang J, Yang J and Xie Y 2013 J. Am. Chem. Soc. 135 5144 [51] Vaterlaus H P and Levy F 1985 J. Phys. C:Solid State Phys. 18 2351 [52] Klipstein P C, Bagnall A G, Liang W Y, Marseglia E A and Friend R H 1981 J. Phys. C:Solid State Phys. 14 4067 [53] Klein M V 1982 Light Scattering in Solids, Topics in Applied Physics, 2nd ed. (Berlin:Springer) [54] Wu S F, Richard P, Wang X B, Lian C S, Nie S M, Wang J T, Wang N L and Ding H 2014 Phys. Rev. B 90 054519 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|