Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 103101    DOI: 10.1088/1674-1056/ab4276
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Interface properties and electronic structures of aromatic molecules with anhydride and thio-functional groups on Ag (111) and Au (111) substrates

Wei-Qi Yu(余维琪)1,2, Hong-Jun Xiao(肖红君)2, Ge-Ming Wang(王戈明)1
1 Wuhan Institute of Technology, Wuhan 430205, China;
2 National Center for Nanoscience and Technology, Beijing 100190, China
Abstract  First-principles calculations for several aromatic molecules with anhydride and thio groups on Ag (111) and Au (111) reveal that the self-assembly structures and the interface properties are mainly determined by the functional groups of aromatic molecules. Detailed investigations of the electronic structures show that the electrons in molecular backbone are redistributed and charge transfer occurs through the bond between the metal and the functional groups after these molecules have been deposited on a metal substrate. The interaction between Ag (111) (or Au (111)) and aromatic molecules with anhydride functional groups strengthens the π bonds in the molecular backbone, while that between Ag (111) (or Au (111)) and aromatic molecules with sulfur weakens the π bonds. However, the intrinsic electronic structures of the molecules are mostly conserved. The large-sized aromatic backbone has less influence on the nature of electronic structures than the small-sized one, either at the interface or at the molecules. These results are useful to build the good metal-molecule contact in molecule-based devices.
Keywords:  aromatic molecules      electronic structures      metal surface      density functional theory  
Received:  21 July 2019      Revised:  17 August 2019      Accepted manuscript online: 
PACS:  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51471185 and 51325204), the National Key Research and Development Program of China (Grant No. 2016YFJC020013), and the National Supercomputing Center in Tianjin.
Corresponding Authors:  Hong-Jun Xiao     E-mail:  xiaohj@nanoctr.cn

Cite this article: 

Wei-Qi Yu(余维琪), Hong-Jun Xiao(肖红君), Ge-Ming Wang(王戈明) Interface properties and electronic structures of aromatic molecules with anhydride and thio-functional groups on Ag (111) and Au (111) substrates 2019 Chin. Phys. B 28 103101

[1] Shinar J 2004 Organic Light-emitting devices: A survey (New York: AIP Press/Springer) p. 17
[2] Hirata S, Sakai Y, Masui K, Tanaka H, Lee S Y, Nomura H, Nakamura N, Yasumatsu M, Nakanotani H, Zhang Q S, Shizu K, Miyazaki1 H and Adachi1 C 2015 Nat. Mater. 14 330
[3] Zhang Q S, Li B, Huang S P, Nomura H, Tanaka, H and Adachi C 2014 Nat. Photpon. 8 326
[4] Dimitrakopoulos C D, Purushothaman S, Kymissis J, Callegari A and Shaw J M 1999 Science 283 822
[5] Shaheen S E, Ginley D S and Jabbour G E 2005 MRS Bull. 30 10
[6] Peumans P, Yakimov A and Forrest S R 2003 J. Appl. Phys. 93 3693
[7] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
[8] Torsi L, Dodabalapur A, Sabbatini L and Zambonin P G 2000 Sens. Actuators B-Chem. 67 312
[9] Green J E, Choi J W, Boukai A, Bunimovich Y, Johnston-Halperin E, DeIonno E, Luo Y, Sheriff B A, Xu K, Shin, Y S, Tseng H R, Stoddart J F and Heath J R 2007 Nature 445 414
[10] Heimel G, Romane L, Bredas J L and Zojer E 2006 Phys. Rev. Lett. 96 196806
[11] Gao L, Du S X and Gao H J 2010 Int. J. Mol. Sci. 11 656
[12] Reed M A, Zhou C J, Muller T P, Burgin T P and Tour J M 1997 Science 278 252
[13] Bolinger J C, Traub M C, Adachi T and Barbara P F 2011 Science 331 565
[14] Gao L, Deng Z T, Ji W, Lin X, Cheng Z H, He X B, Shi D X and Gao H J 2006 Phys. Rev. B 73 075424
[15] Tang Y Y, Mei Q B, Xu Z J and Ling Q D 2011 Prog. Chem. 23 1915
[16] Schull G, Frederiksen T, Arnau A, Sánchez-Portal D and Berndt R 2011 Nat. Nanotechnol. 6 23
[17] Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C and Gao H J 2007 Phys. Rev. Lett. 99 106402
[18] Barraud C, Seneor P and Mattana R 2010 Nat. Phys. 6 615
[19] Yang B, Wang Y L, Cun H Y, Du S X, Xu, M C, Wang Y, Ernst K H and Gao H J 2010 J. Am. Chem. Soc. 132 10440
[20] Yoo J W, Chen C Y, Jang H W, Bark C W, Prigodin V N, Eom C B and Epstein A J 2010 Nat. Mater. 9 638
[21] Du S X, Gao H J, Seidel C, Tsetseris L, Ji W Kopf H, Chi L F, Fuchs H, Pennycook S J and Pantelides S T 2006 Phys. Rev. Lett. 97 156105
[22] Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J and Yacoby A 2005 Nature 436 677
[23] Chen W, Wang L, Huang C, Lin T T, Gao X Y, Loh K P, Chen Z K and Wee A T 2006 J. Am. Chem. Soc. 128 935
[24] Xiao W D, Zhang Y Y, Tao L, At-Mansour K, Chernichenko K Y, Nenajdenko V G, Ruffieux P, Du S X, Gao H J and Fasel R 2015 Sci. Rep. 4 5415
[25] Aradhya S V, Frei M, Hybertsen M S and Venkataraman L 2012 Nat. Mater. 11 872
[26] Bartels L 2010 Nat. Chem. 2 87
[27] Li G, Tamblyn I, Cooper V R, Gao H J and Neaton J B 2012 Phys. Rev. B 85 121409(R)
[28] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Grimme S 2006 J. Comput. Chem. 27 1787
[31] Bučko T, Hafner J, Lebégue S and Ángyán J G 2010 J. Phys. Chem. A 114 11814
[32] Tonigold K and Gross A J 2010 Chem. Phys. 132 224701
[33] Hu Z X, Lan H P and Ji W 2014 Sci. Rep. 40 5036
[34] Ji W, Lu Z Y and Gao H J 2006 Phys. Rev. Lett. 97 246101
[35] Ji W, Lu Z Y and Gao H J 2008 Phys. Rev. B 77 113406
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
No Suggested Reading articles found!