|
|
Interface properties and electronic structures of aromatic molecules with anhydride and thio-functional groups on Ag (111) and Au (111) substrates |
Wei-Qi Yu(余维琪)1,2, Hong-Jun Xiao(肖红君)2, Ge-Ming Wang(王戈明)1 |
1 Wuhan Institute of Technology, Wuhan 430205, China; 2 National Center for Nanoscience and Technology, Beijing 100190, China |
|
|
Abstract First-principles calculations for several aromatic molecules with anhydride and thio groups on Ag (111) and Au (111) reveal that the self-assembly structures and the interface properties are mainly determined by the functional groups of aromatic molecules. Detailed investigations of the electronic structures show that the electrons in molecular backbone are redistributed and charge transfer occurs through the bond between the metal and the functional groups after these molecules have been deposited on a metal substrate. The interaction between Ag (111) (or Au (111)) and aromatic molecules with anhydride functional groups strengthens the π bonds in the molecular backbone, while that between Ag (111) (or Au (111)) and aromatic molecules with sulfur weakens the π bonds. However, the intrinsic electronic structures of the molecules are mostly conserved. The large-sized aromatic backbone has less influence on the nature of electronic structures than the small-sized one, either at the interface or at the molecules. These results are useful to build the good metal-molecule contact in molecule-based devices.
|
Received: 21 July 2019
Revised: 17 August 2019
Accepted manuscript online:
|
PACS:
|
31.15.V-
|
(Electron correlation calculations for atoms, ions and molecules)
|
|
31.10.+z
|
(Theory of electronic structure, electronic transitions, and chemical binding)
|
|
68.43.-h
|
(Chemisorption/physisorption: adsorbates on surfaces)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51471185 and 51325204), the National Key Research and Development Program of China (Grant No. 2016YFJC020013), and the National Supercomputing Center in Tianjin. |
Corresponding Authors:
Hong-Jun Xiao
E-mail: xiaohj@nanoctr.cn
|
Cite this article:
Wei-Qi Yu(余维琪), Hong-Jun Xiao(肖红君), Ge-Ming Wang(王戈明) Interface properties and electronic structures of aromatic molecules with anhydride and thio-functional groups on Ag (111) and Au (111) substrates 2019 Chin. Phys. B 28 103101
|
[1] |
Shinar J 2004 Organic Light-emitting devices: A survey (New York: AIP Press/Springer) p. 17
|
[2] |
Hirata S, Sakai Y, Masui K, Tanaka H, Lee S Y, Nomura H, Nakamura N, Yasumatsu M, Nakanotani H, Zhang Q S, Shizu K, Miyazaki1 H and Adachi1 C 2015 Nat. Mater. 14 330
|
[3] |
Zhang Q S, Li B, Huang S P, Nomura H, Tanaka, H and Adachi C 2014 Nat. Photpon. 8 326
|
[4] |
Dimitrakopoulos C D, Purushothaman S, Kymissis J, Callegari A and Shaw J M 1999 Science 283 822
|
[5] |
Shaheen S E, Ginley D S and Jabbour G E 2005 MRS Bull. 30 10
|
[6] |
Peumans P, Yakimov A and Forrest S R 2003 J. Appl. Phys. 93 3693
|
[7] |
Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
|
[8] |
Torsi L, Dodabalapur A, Sabbatini L and Zambonin P G 2000 Sens. Actuators B-Chem. 67 312
|
[9] |
Green J E, Choi J W, Boukai A, Bunimovich Y, Johnston-Halperin E, DeIonno E, Luo Y, Sheriff B A, Xu K, Shin, Y S, Tseng H R, Stoddart J F and Heath J R 2007 Nature 445 414
|
[10] |
Heimel G, Romane L, Bredas J L and Zojer E 2006 Phys. Rev. Lett. 96 196806
|
[11] |
Gao L, Du S X and Gao H J 2010 Int. J. Mol. Sci. 11 656
|
[12] |
Reed M A, Zhou C J, Muller T P, Burgin T P and Tour J M 1997 Science 278 252
|
[13] |
Bolinger J C, Traub M C, Adachi T and Barbara P F 2011 Science 331 565
|
[14] |
Gao L, Deng Z T, Ji W, Lin X, Cheng Z H, He X B, Shi D X and Gao H J 2006 Phys. Rev. B 73 075424
|
[15] |
Tang Y Y, Mei Q B, Xu Z J and Ling Q D 2011 Prog. Chem. 23 1915
|
[16] |
Schull G, Frederiksen T, Arnau A, Sánchez-Portal D and Berndt R 2011 Nat. Nanotechnol. 6 23
|
[17] |
Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C and Gao H J 2007 Phys. Rev. Lett. 99 106402
|
[18] |
Barraud C, Seneor P and Mattana R 2010 Nat. Phys. 6 615
|
[19] |
Yang B, Wang Y L, Cun H Y, Du S X, Xu, M C, Wang Y, Ernst K H and Gao H J 2010 J. Am. Chem. Soc. 132 10440
|
[20] |
Yoo J W, Chen C Y, Jang H W, Bark C W, Prigodin V N, Eom C B and Epstein A J 2010 Nat. Mater. 9 638
|
[21] |
Du S X, Gao H J, Seidel C, Tsetseris L, Ji W Kopf H, Chi L F, Fuchs H, Pennycook S J and Pantelides S T 2006 Phys. Rev. Lett. 97 156105
|
[22] |
Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J and Yacoby A 2005 Nature 436 677
|
[23] |
Chen W, Wang L, Huang C, Lin T T, Gao X Y, Loh K P, Chen Z K and Wee A T 2006 J. Am. Chem. Soc. 128 935
|
[24] |
Xiao W D, Zhang Y Y, Tao L, At-Mansour K, Chernichenko K Y, Nenajdenko V G, Ruffieux P, Du S X, Gao H J and Fasel R 2015 Sci. Rep. 4 5415
|
[25] |
Aradhya S V, Frei M, Hybertsen M S and Venkataraman L 2012 Nat. Mater. 11 872
|
[26] |
Bartels L 2010 Nat. Chem. 2 87
|
[27] |
Li G, Tamblyn I, Cooper V R, Gao H J and Neaton J B 2012 Phys. Rev. B 85 121409(R)
|
[28] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[29] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[30] |
Grimme S 2006 J. Comput. Chem. 27 1787
|
[31] |
Bučko T, Hafner J, Lebégue S and Ángyán J G 2010 J. Phys. Chem. A 114 11814
|
[32] |
Tonigold K and Gross A J 2010 Chem. Phys. 132 224701
|
[33] |
Hu Z X, Lan H P and Ji W 2014 Sci. Rep. 40 5036
|
[34] |
Ji W, Lu Z Y and Gao H J 2006 Phys. Rev. Lett. 97 246101
|
[35] |
Ji W, Lu Z Y and Gao H J 2008 Phys. Rev. B 77 113406
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|