|
|
CN bond orientation in metal carbonitride endofullerenes:A density functional theory study |
Zhu-Xia Zhang(张竹霞)1,2,3, Yong Zhang(张勇)1,2, Wen-Hua Xue(薛文华)1,2, Wei Jia(贾伟)1,2, Cai-Li Zhang(张彩丽)1, Chun-Xia Li(李春霞)4, Peng Cui(崔鹏)5 |
1. Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
2. Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
3. Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Linfen 041004, China;
4. School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China;
5. School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China |
|
|
Abstract The geometric and electronic structures of scandium carbonitride endofullerene Sc3CN@C2n (2n=68, 78, 80, 82, and 84) and Sc(Y)NC@C76 have been systematically investigated to identify the preferred position of internal C and N atoms by density functional theory (DFT) calculations combined with statistical mechanics treatments. The CN bond orientation can generally be inferred from the molecule stability and electronic configuration. It is found that Sc3CN@C2n molecules have the most stable structure with C atom locating at the center of Sc3CN cluster. The CN bond has trivalent form of[CN]3- and connects with adjacent three Sc atoms tightly. However, in Sc(Y)NC@C76 with[NC]-, the N atom always resides in the center of the whole molecule. In addition, the stability of Sc3CN@C2n has been further compared in terms of the organization of the corresponding molecular energy level. The structural differences between Sc3CN@C2n and Sc3NC@C2n are highlighted by their respected infrared spectra.
|
Received: 02 August 2017
Revised: 25 September 2017
Accepted manuscript online:
|
PACS:
|
31.15.E-
|
|
|
36.20.Kd
|
(Electronic structure and spectra)
|
|
36.40.Mr
|
(Spectroscopy and geometrical structure of clusters)
|
|
68.55.ap
|
(Fullerenes)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21503208, 61604104, and 51002102), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2015011034, 201601D202034, and 201601D202029), and the Natural Science Foundation Project of Chongqing Science and Technology Commission, China (Grant No. cstc2014jcyjA00032). |
Corresponding Authors:
Zhu-Xia Zhang, Zhu-Xia Zhang
E-mail: zhangzhuxia@tyut.edu.cn;pcui@ustc.edu.cn
|
Cite this article:
Zhu-Xia Zhang(张竹霞), Yong Zhang(张勇), Wen-Hua Xue(薛文华), Wei Jia(贾伟), Cai-Li Zhang(张彩丽), Chun-Xia Li(李春霞), Peng Cui(崔鹏) CN bond orientation in metal carbonitride endofullerenes:A density functional theory study 2017 Chin. Phys. B 26 123102
|
[1] |
Cerón M R, Li F F and Echegoyen L A 2014 J. Phys. Org. Chem. 27 258
|
[2] |
Yang S, Liu F, Chen C, Jiao M and Wei T 2011 Chem. Commun. 47 11822
|
[3] |
Wang T and Wang C 2014 Acc. Chem. Res. 47 450
|
[4] |
Lu X, Feng L, Akasaka T and Nagase S 2012 Chem. Soc. Rev. 41 7723
|
[5] |
Jin P, Tang C and Chen Z 2014 Coord. Chem. Rev. 270-271 89
|
[6] |
Popov A A, Yang S and Dunsch L 2013 Chem. Rev. 113 5989
|
[7] |
Tang C M, Guo W, Zhu W H, Liu M Y, Zhang A M, Gong J F and Hui W 2012 Acta Phys. Sin. 61 26101(in Chinese)
|
[8] |
Deng Q and Popov A A 2014 J. Am. Chem. Soc. 136 4257
|
[9] |
Zhao R, Guo Y, Zhao P, Ehara M, Nagase S and Zhao X 2016 J. Phys. Chem. C 120 1275
|
[10] |
Yang S, Wei T and Jin F 2017 Chem. Soc. Rev. 46 5005
|
[11] |
Rodríguez-Fortea A, Alegret N, Balch A L and Poblet J M 2010 Nat. Chem. 2 955
|
[12] |
Garcia-Borras M, Osuna S, Luis J M, Swart M and Sola M 2014 Chem. Soc. Rev. 43 5089
|
[13] |
Garcia-Borrás M, Osuna S, Luis J M, Swart M and Solá M 2013 Chem. Eur. J. 19 14931
|
[14] |
Osuna S, Swart M and Sola M 2011 Phys. Chem. Chem. Phys. 13 3585
|
[15] |
Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan M R, Craft J, Hadju E, Bible R, Olmstead M M, Maitra K, Fisher A J, Balch A L and Dorn H C 1999 Nature 401 55
|
[16] |
Wang C R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M and Shinohara H 2001 Angew. Chem. Int. Ed. 40 397
|
[17] |
Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu M T H, Mizorogi N, Kobayashi K and Nagase S 2005 J. Am. Chem. Soc. 127 12500
|
[18] |
Iiduka Y, Wakahara T, Nakajima K, Nakahodo T, Tsuchiya T, Maeda Y, Akasaka T, Yoza K, Liu M T H, Mizorogi N and Nagase S 2007 Angew. Chem. Int. Ed. 119 5658
|
[19] |
Kurihara H, Lu X, Iiduka Y, Nikawa H, Hachiya M, Mizorogi N, Slanina Z, Tsuchiya T, Nagase S and Akasaka T 2012 Inorg. Chem. 51 746
|
[20] |
Wang T S, Chen N, Xiang J F, Li B, Wu J Y, Xu W, Jiang L, Tan K, Shu C Y, Lu X and Wang C R 2009 J. Am. Chem. Soc. 131 16646
|
[21] |
Shi Z Q, Wu X, Wang C R, Lu X and Shinohara H 2006 Angew. Chem. Int. Ed. 45 2107
|
[22] |
Tan K and Lu X 2005 Chem. Commun. 0 4444
|
[23] |
Yumura T, Sato Y, Suenaga K and Iijima S 2005 J. Phys. Chem. B 109 20251
|
[24] |
Zhao S, Zhao P, Cai W, Bao L, Chen M, Xie Y, Zhao X and Lu X 2017 J. Am. Chem. Soc. 139 4724
|
[25] |
Jin P, Zhou Z, Hao C, Gao Z, Tan K, Lu X and Chen Z 2010 Phys. Chem. Chem. Phys. 12 12442
|
[26] |
Wang T, Wu J and Feng Y 2014 Dalton T. 43 16270
|
[27] |
Wang T S, Feng L, Wu J Y, Xu W, Xiang J F, Tan K, Ma Y H, Zheng J P, Jiang L, Lu X, Shu C Y and Wang C R 2010 J. Am. Chem. Soc. 132 16362
|
[28] |
Wu J, Wang T, Ma Y, Jiang L, Shu C and Wang C 2011 J. Phys. Chem. C 115 23755
|
[29] |
Meng Q Y, Sun X Y, Wang C Y and Wang D L 2014 Chem. Phys. Lett. 613 24
|
[30] |
Wang D L, Xu H L, Su Z M and Xin G 2012 Phys. Chem. Chem. Phys. 14 15099
|
[31] |
Liu F, Wang S, Guan J, Wei T, Zeng M and Yang S 2014 Inorg. Chem. 53 5201
|
[32] |
Yang S, Chen C, Liu F, Xie Y, Li F, Jiao M, Suzuki M, Wei T, Wang S, Chen Z, Lu X and Akasaka T 2013 Sci. Rep. 3 1487
|
[33] |
Zheng H, Zhao X, He L, Wang W W and Nagase S 2014 Inorg. Chem. 53 12911
|
[34] |
Liu F, Gao C L, Deng Q, Zhu X, Kostanyan A, Westerstrom R, Wang S, Tan Y Z, Tao J, Xie S Y, Popov A A, Greber T and Yang S 2016 J. Am. Chem. Soc. 138 14764
|
[35] |
Meng Q Y, Wang D L, Xin G, Li T C and Hou D Y 2014 Comput. Theor. Chem. 1050 83
|
[36] |
Liu F, Wang S, Gao C L, Deng Q, Zhu X, Kostanyan A, Westerstrom R, Jin F, Xie S Y, Popov A A, Greber T and Yang S 2017 Angew. Chem. Int. Ed. Engl. 56 1830
|
[37] |
Zhao L J and Wang D L 2015 Int. J. Quantum Chem. 115 779
|
[38] |
Andrae D, Häußermann U, Dolg M, Stoll H, and Preuß H 1990 Theor. Chim. Acta 77 123
|
[39] |
Martin J M L and Sundermann A 2001 J. Chem. Phys. 114 3408
|
[40] |
Slanina Z, Lee S L, Uhlík F, Adamowicz L and Nagase S 2006 Theor. Chem. Acc. 117 315
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|