Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 123102    DOI: 10.1088/1674-1056/26/12/123102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

CN bond orientation in metal carbonitride endofullerenes:A density functional theory study

Zhu-Xia Zhang(张竹霞)1,2,3, Yong Zhang(张勇)1,2, Wen-Hua Xue(薛文华)1,2, Wei Jia(贾伟)1,2, Cai-Li Zhang(张彩丽)1, Chun-Xia Li(李春霞)4, Peng Cui(崔鹏)5
1. Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
2. Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
3. Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Linfen 041004, China;
4. School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China;
5. School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China
Abstract  

The geometric and electronic structures of scandium carbonitride endofullerene Sc3CN@C2n (2n=68, 78, 80, 82, and 84) and Sc(Y)NC@C76 have been systematically investigated to identify the preferred position of internal C and N atoms by density functional theory (DFT) calculations combined with statistical mechanics treatments. The CN bond orientation can generally be inferred from the molecule stability and electronic configuration. It is found that Sc3CN@C2n molecules have the most stable structure with C atom locating at the center of Sc3CN cluster. The CN bond has trivalent form of[CN]3- and connects with adjacent three Sc atoms tightly. However, in Sc(Y)NC@C76 with[NC]-, the N atom always resides in the center of the whole molecule. In addition, the stability of Sc3CN@C2n has been further compared in terms of the organization of the corresponding molecular energy level. The structural differences between Sc3CN@C2n and Sc3NC@C2n are highlighted by their respected infrared spectra.

Keywords:  geometric and electronic structures      metal carbonitride endofullerenes      theoretical calculations      CN bond orientation  
Received:  02 August 2017      Revised:  25 September 2017      Accepted manuscript online: 
PACS:  31.15.E-  
  36.20.Kd (Electronic structure and spectra)  
  36.40.Mr (Spectroscopy and geometrical structure of clusters)  
  68.55.ap (Fullerenes)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21503208, 61604104, and 51002102), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2015011034, 201601D202034, and 201601D202029), and the Natural Science Foundation Project of Chongqing Science and Technology Commission, China (Grant No. cstc2014jcyjA00032).

Corresponding Authors:  Zhu-Xia Zhang, Zhu-Xia Zhang     E-mail:  zhangzhuxia@tyut.edu.cn;pcui@ustc.edu.cn

Cite this article: 

Zhu-Xia Zhang(张竹霞), Yong Zhang(张勇), Wen-Hua Xue(薛文华), Wei Jia(贾伟), Cai-Li Zhang(张彩丽), Chun-Xia Li(李春霞), Peng Cui(崔鹏) CN bond orientation in metal carbonitride endofullerenes:A density functional theory study 2017 Chin. Phys. B 26 123102

[1] Cerón M R, Li F F and Echegoyen L A 2014 J. Phys. Org. Chem. 27 258
[2] Yang S, Liu F, Chen C, Jiao M and Wei T 2011 Chem. Commun. 47 11822
[3] Wang T and Wang C 2014 Acc. Chem. Res. 47 450
[4] Lu X, Feng L, Akasaka T and Nagase S 2012 Chem. Soc. Rev. 41 7723
[5] Jin P, Tang C and Chen Z 2014 Coord. Chem. Rev. 270-271 89
[6] Popov A A, Yang S and Dunsch L 2013 Chem. Rev. 113 5989
[7] Tang C M, Guo W, Zhu W H, Liu M Y, Zhang A M, Gong J F and Hui W 2012 Acta Phys. Sin. 61 26101(in Chinese)
[8] Deng Q and Popov A A 2014 J. Am. Chem. Soc. 136 4257
[9] Zhao R, Guo Y, Zhao P, Ehara M, Nagase S and Zhao X 2016 J. Phys. Chem. C 120 1275
[10] Yang S, Wei T and Jin F 2017 Chem. Soc. Rev. 46 5005
[11] Rodríguez-Fortea A, Alegret N, Balch A L and Poblet J M 2010 Nat. Chem. 2 955
[12] Garcia-Borras M, Osuna S, Luis J M, Swart M and Sola M 2014 Chem. Soc. Rev. 43 5089
[13] Garcia-Borrás M, Osuna S, Luis J M, Swart M and Solá M 2013 Chem. Eur. J. 19 14931
[14] Osuna S, Swart M and Sola M 2011 Phys. Chem. Chem. Phys. 13 3585
[15] Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan M R, Craft J, Hadju E, Bible R, Olmstead M M, Maitra K, Fisher A J, Balch A L and Dorn H C 1999 Nature 401 55
[16] Wang C R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M and Shinohara H 2001 Angew. Chem. Int. Ed. 40 397
[17] Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu M T H, Mizorogi N, Kobayashi K and Nagase S 2005 J. Am. Chem. Soc. 127 12500
[18] Iiduka Y, Wakahara T, Nakajima K, Nakahodo T, Tsuchiya T, Maeda Y, Akasaka T, Yoza K, Liu M T H, Mizorogi N and Nagase S 2007 Angew. Chem. Int. Ed. 119 5658
[19] Kurihara H, Lu X, Iiduka Y, Nikawa H, Hachiya M, Mizorogi N, Slanina Z, Tsuchiya T, Nagase S and Akasaka T 2012 Inorg. Chem. 51 746
[20] Wang T S, Chen N, Xiang J F, Li B, Wu J Y, Xu W, Jiang L, Tan K, Shu C Y, Lu X and Wang C R 2009 J. Am. Chem. Soc. 131 16646
[21] Shi Z Q, Wu X, Wang C R, Lu X and Shinohara H 2006 Angew. Chem. Int. Ed. 45 2107
[22] Tan K and Lu X 2005 Chem. Commun. 0 4444
[23] Yumura T, Sato Y, Suenaga K and Iijima S 2005 J. Phys. Chem. B 109 20251
[24] Zhao S, Zhao P, Cai W, Bao L, Chen M, Xie Y, Zhao X and Lu X 2017 J. Am. Chem. Soc. 139 4724
[25] Jin P, Zhou Z, Hao C, Gao Z, Tan K, Lu X and Chen Z 2010 Phys. Chem. Chem. Phys. 12 12442
[26] Wang T, Wu J and Feng Y 2014 Dalton T. 43 16270
[27] Wang T S, Feng L, Wu J Y, Xu W, Xiang J F, Tan K, Ma Y H, Zheng J P, Jiang L, Lu X, Shu C Y and Wang C R 2010 J. Am. Chem. Soc. 132 16362
[28] Wu J, Wang T, Ma Y, Jiang L, Shu C and Wang C 2011 J. Phys. Chem. C 115 23755
[29] Meng Q Y, Sun X Y, Wang C Y and Wang D L 2014 Chem. Phys. Lett. 613 24
[30] Wang D L, Xu H L, Su Z M and Xin G 2012 Phys. Chem. Chem. Phys. 14 15099
[31] Liu F, Wang S, Guan J, Wei T, Zeng M and Yang S 2014 Inorg. Chem. 53 5201
[32] Yang S, Chen C, Liu F, Xie Y, Li F, Jiao M, Suzuki M, Wei T, Wang S, Chen Z, Lu X and Akasaka T 2013 Sci. Rep. 3 1487
[33] Zheng H, Zhao X, He L, Wang W W and Nagase S 2014 Inorg. Chem. 53 12911
[34] Liu F, Gao C L, Deng Q, Zhu X, Kostanyan A, Westerstrom R, Wang S, Tan Y Z, Tao J, Xie S Y, Popov A A, Greber T and Yang S 2016 J. Am. Chem. Soc. 138 14764
[35] Meng Q Y, Wang D L, Xin G, Li T C and Hou D Y 2014 Comput. Theor. Chem. 1050 83
[36] Liu F, Wang S, Gao C L, Deng Q, Zhu X, Kostanyan A, Westerstrom R, Jin F, Xie S Y, Popov A A, Greber T and Yang S 2017 Angew. Chem. Int. Ed. Engl. 56 1830
[37] Zhao L J and Wang D L 2015 Int. J. Quantum Chem. 115 779
[38] Andrae D, Häußermann U, Dolg M, Stoll H, and Preuß H 1990 Theor. Chim. Acta 77 123
[39] Martin J M L and Sundermann A 2001 J. Chem. Phys. 114 3408
[40] Slanina Z, Lee S L, Uhlík F, Adamowicz L and Nagase S 2006 Theor. Chem. Acc. 117 315
[1] Nitrogen-tailored quasiparticle energy gaps of polyynes
Kan Zhang(张侃), Jiling Li(李继玲), Peitao Liu(刘培涛), Guowei Yang(杨国伟), and Lei Shi(石磊). Chin. Phys. B, 2022, 31(12): 123102.
[2] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[3] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[4] Polarization-resolved Raman spectra of α -PtO2
Zhanhong Lei(雷展宏), Weiliang Wang(王伟良), and Juncong She(佘峻聪). Chin. Phys. B, 2021, 30(4): 047102.
[5] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[6] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[7] First principles study of post-boron carbide phases with icosahedra broken
Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡. Chin. Phys. B, 2020, 29(10): 103102.
[8] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[9] Sodium decorated net-Y nanosheet for hydrogen storage and adsorption mechanism: A first-principles study
Yunlei Wang(王云蕾), Yuhong Chen(陈玉红), Yunhui Wang(王允辉). Chin. Phys. B, 2020, 29(1): 016801.
[10] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[11] Diffusion Monte Carlo calculations on LaB molecule
Nagat Elkahwagy, Atif Ismail, S M A Maize, K R Mahmoud. Chin. Phys. B, 2018, 27(9): 093102.
[12] Improvement of the thermoelectric efficiency of pyrene-based molecular junction with doping engineering
Mohammad Farid Jamali, Meysam Bagheri Tagani, Hamid Rahimpour Soleimani. Chin. Phys. B, 2017, 26(12): 123101.
[13] Effects of temperature and pressure on thermodynamic properties of Cd0.25Zn0.75 alloy
Najm Ul Aarifeen, A Afaq. Chin. Phys. B, 2017, 26(12): 123103.
[14] Thermodynamic properties of ZnSe under pressure and with variation in temperature
Najm Ul Aarifeen, A Afaq. Chin. Phys. B, 2017, 26(9): 093105.
[15] Geometries, stabilities, and electronic properties analysis in InnNi(0, ±1) clusters: Molecular modeling and DFT calculations
Shun-Ping Shi(史顺平), Chuan-Yu Zhang(张传瑜), Xiao-Feng Zhao(赵晓凤), Xia Li(李侠), Min Yan(闫珉), Gang Jiang(蒋刚). Chin. Phys. B, 2017, 26(8): 083103.
No Suggested Reading articles found!