CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First principles study of stability, mechanical, and electronic properties of chromium silicides |
Bo Ren(任博), De-Hong Lu(卢德宏), Rong Zhou(周荣), De-Peng Ji(姬德朋), Ming-Yu Hu(胡明钰), Jing Feng(冯晶) |
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China |
|
|
Abstract Through the first principles calculations, the chemical stability, mechanical, and electronic properties of chromium silicides are predicted. Estimating enthalpies and binding energies, density state density and electron density distribution are combined to analyse the thermodynamic stability and physical properties of chrome-silicon binary compounds. The chromium silicide includes Cr3Si, Cr5Si3, CrSi, and CrSi2. The chemical stability and the information about electronic structure, mechanical properties, Debye temperature, and anisotropy properties are obtained by density functional theory and Debye quasi-harmonic approximation. Meanwhile, the calculation of elastic modulus shows that Cr3Si has the highest body modulus value (251 GPa) and CrSi2 possesses the highest shear modulus (169.5 GPa) and Young's modulus (394.9 GPa). In addition, the Debye temperature and the speed of sound of these Cr-Si compounds are also calculated. Since the calculated bulk modulus is different from Young's modulus anisotropy index, and also different from Young's modulus of a three-dimensional surface shape, the different mechanical anisotropies of all the compounds are obtained.
|
Received: 17 May 2018
Revised: 03 July 2018
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.23.-k
|
(Electronic structure of disordered solids)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51265019). |
Corresponding Authors:
De-Hong Lu
E-mail: ldhongkust@126.com
|
Cite this article:
Bo Ren(任博), De-Hong Lu(卢德宏), Rong Zhou(周荣), De-Peng Ji(姬德朋), Ming-Yu Hu(胡明钰), Jing Feng(冯晶) First principles study of stability, mechanical, and electronic properties of chromium silicides 2018 Chin. Phys. B 27 107102
|
[1] |
Mattheiss L 1991 Phys. Rev. B 43 12549
|
[2] |
Shah D, Berczik D, Anton D and Hecht R 1992 Mater. Sci. Eng. A 155 45
|
[3] |
Qian-Gang F, He-Jun L, Xiao-Hong S, Xiao-Ling L, Ke-Zhi L and Min H 2006 Appl. Surf. Sci. 252 3475
|
[4] |
Yeh C L and Lin J Z 2013 Intermetallics 33 126
|
[5] |
Duan G and Wang H M 2002 Scr. Mater. 46 107
|
[6] |
Okamoto H 2001 J. Phase Equilibria 22 593
|
[7] |
Du Y and Schuster J C 2000 J. Phase Equilibria 21 281
|
[8] |
Chen H, Du Y and Schuster J C 2009 Calphad 33 211
|
[9] |
Krijn M and Eppenga R 1991 Phys. Rev. B 44 9042
|
[10] |
Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.-Condes. Matter 14 2717
|
[11] |
Gao S, Xiang H, Xu B, Xia Y D, Yin J and Liu Z G 2016 Chin. Phys. Lett. 33 083101
|
[12] |
Liu G, Liu S B, Xu B, Ouyang C Y and Song H Y 2015 J. Appl. Phys. 112 666
|
[13] |
Gokhale A B and Abbaschian G J 1987 J. Phase Equilibria 8 474
|
[14] |
Macdonald A H 1978 Phys. Rev. B 18 5897
|
[15] |
Haiyang Z and Shunle D 2013 Chin. Phys. Lett. 30 43102
|
[16] |
Pan L J, Zhang J, Chen W G and Tang Y N 2015 Chin. Phys. Lett. 32 036101
|
[17] |
Cui S and Jung I H 2017 J. Alloys Compd. 708 887
|
[18] |
Zhou S, Xie Q, Yan W and Chen Q 2009 Sci. Chin.-Phys. Mech. Astron. 52 46
|
[19] |
Chart T G 2013 Met. Sci. 9 504
|
[20] |
Jauch W, Schultz A J and Heger G 1987 J. Appl. Crystallogr. 20 117
|
[21] |
Ma J, Gu Y, Shi L, Chen L, Yang Z and Qian Y 2004 J. Alloys Compd. 376 176
|
[22] |
Meschel S V and Kleppa O J 1998 J. Alloys Compd. 267 128
|
[23] |
Jurisch M and Behr G 1979 Acta Phys. Acad. Sci. Hung. 47 201
|
[24] |
Coughanowr C A, Ansara I and Lukas H L 1994 Calphad-Comput. Coupling Ph. Diagrams Thermochem. 18 125
|
[25] |
Dai Y Y, Li Y, Peng S M, Long X G, Fei G and Xiaotao Z U 2010 Chin. Phys. Lett. 27 42
|
[26] |
Song Y J, Zhang Q H, Shen X, Ni X D, Yao Y and Yu R C 2014 Chin. Phys. Lett. 31 017501
|
[27] |
Huang L T, Chen Z, Wang Y X and Lu Y L 2017 Chin. Phys. B 26 103103
|
[28] |
Xie X D, Hao Y Y, Zhang R G and Wang B J 2012 Acta Phys. Sin. 61 855 (in Chinese)
|
[29] |
Raheleh, Pilevar, Shahri, Arsalan and Akhtar 2017 Chin. Phys. B 26 093107
|
[30] |
Chong X Y, Jiang Y H, Zhou R and Feng J 2014 Comput. Mater. Sci. 87 19
|
[31] |
Feng J, Xiao B, Chen J, Du Y, Yu J and Zhou R 2011 Mater. 32 3231
|
[32] |
Wen M and Wang C Y 2017 Chin. Phys. B 26 093106
|
[33] |
Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 054115
|
[34] |
Patil S K R, Khare S V, Tuttle B R, Bording J K and Kodambaka S 2006 Phys. Rev. B 73 4118
|
[35] |
Bei H, George E P and Pharr G M 2004 Scr. Mater. 51 875
|
[36] |
Nakamura M 1994 Metall. Mater. Trans. A 25 331
|
[37] |
Hermet P, Khalil M, Viennois R, Beaudhuin M, Bourgogne D and Ravot D 2015 RSC Adv. 5 19106
|
[38] |
Zhang X, Wang Z and Qiao Y 2011 Acta Mater. 59 5584
|
[39] |
Zhou W, Liu L, Li B, Wu P and Song Q 2009 Comput. Mater. Sci. 46 921
|
[40] |
Zinoveva G P, Andreeva L P and Geld P V 1974 Phys. Status Solidi 23 711
|
[41] |
Hill R W 1952 Proc. Phys. Soc. 65 349
|
[42] |
Xiao B, Feng J, Zhou C T, Jiang Y H and Zhou R 2011 J. RSC Adv. 109 083521
|
[43] |
Chong X, Jiang Y, Zhou R and Feng J 2014 RSC Adv. 4 44959
|
[44] |
Wang J and Sun J 2010 Phys. Status Solidi 247 921
|
[45] |
Feng J, Xiao B, Zhou R, Pan W and Clarke D R 2012 Acta Mater. 60 3380
|
[46] |
Anderson O L 1963 J. Phys. Chem. Solids 24 909
|
[47] |
Li Y, Gao Y, Xiao B, Min T, Fan Z, Ma S and Xu L 2010 J. Alloys Compd. 502 28
|
[48] |
Liu Y Z, Jiang Y H, Zhou R and Feng J 2014 J. Alloys Compd. 582 500
|
[49] |
Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R and Pan W 2011 Acta Mater. 59 1742
|
[50] |
Guechi A, Merabet A, Chegaar M, Bouhemadou A and Guechi N 2015 J. Alloys Compd. 623 219
|
[51] |
Feng J, Xiao B, Zhou R and Pan W 2013 Acta Mater. 61 7364
|
[52] |
Sun L, Gao Y, Xiao B, Li Y and Wang G 2013 J. Alloys Compd. 579 457
|
[53] |
Panda K B and Chandran K S R 2006 Acta Mater. 54 1641
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|