CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures |
Xiuya Su(苏秀崖)1, Helin Qin(秦河林)1,2, Zhongbo Yan(严忠波)1, Dingyong Zhong(钟定永)1,2,†, and Donghui Guo(郭东辉)1,‡ |
1 School of Physics, Sun Yat-sen University, Guangzhou 510275, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract Recently, two-dimensional van der Waals (vdW) magnetic heterostructures have attracted intensive attention since they can show remarkable properties due to the magnetic proximity effect. In this work, the spin-polarized electronic structures of antimonene/Fe3GeTe2 vdW heterostructures were investigated through the first-principles calculations. Owing to the magnetic proximity effect, the spin splitting appears at the conduction-band minimum (CBM) and the valence-band maximum (VBM) of the antimonene. A low-energy effective Hamiltonian was proposed to depict the spin splitting. It was found that the spin splitting can be modulated by means of applying an external electric field, changing interlayer distance or changing stacking configuration. The spin splitting energy at the CBM monotonously increases as the external electric field changes from -5 V/nm to 5 V/nm, while the spin splitting energy at the VBM almost remains the same. Meanwhile, as the interlayer distance increases, the spin splitting energies at the CBM and VBM both decrease. The different stacking configurations can also induce different spin splitting energies at the CBM and VBM. Our work demonstrates that the spin splitting of antimonene in this heterostructure is not singly dependent on the nearest Sb—Fe distance, which indicates that magnetic proximity effect in heterostructures may be modulated by multiple factors, such as hybridization of electronic states and the local electronic environment. The results enrich the fundamental understanding of the magnetic proximity effect in two-dimensional vdW heterostructures.
|
Received: 25 June 2021
Revised: 19 July 2021
Accepted manuscript online: 22 July 2021
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.61.Cw
|
(Elemental semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774434, 11974431, and 11832019). The computation part of the work was supported by National Supercomputer Center in Guangzhou. |
Corresponding Authors:
Dingyong Zhong, Donghui Guo
E-mail: dyzhong@mail.sysu.edu.cn;guodonghui@mail.sysu.edu.cn
|
Cite this article:
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉) Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures 2022 Chin. Phys. B 31 037301
|
[1] Zollner K, Faria J P E and Fabian J 2019 Phys. Rev. B 100 085128 [2] Xian J J, Chen L, Liu X, Zhang W H, Peng L, Li R, Cai M, Qiao J and Fu Y S 2020 Phys. Rev. Res. 2 033360 [3] Bergeret F S, Volkov A F and Efetov K B 2001 Phys. Rev. Lett. 86 4096 [4] Tang C L, Zhang Z W, Lai S, Tan Q H and Gao W B 2020 Adv. Mater. 32 1908498 [5] Stahn J, Chakhalian J, Niedermayer C, Hoppler J, Gutberlet T, Voigt J, Treubel F, Habermeier H U, Cristiani G, Keimer B and Bernhard C 2005 Phys. Rev. B 71 140509 [6] Liu Y, Niu X, Zhang R, Zhang Q, Teng J and Li Y 2021 Chin. Phys. Lett. 38 057303 [7] Nadj Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602 [8] Dayen J F, Ray S J, Karis O, Vera-Marun I J and Kamalakar M V 2020 Appl. Phys. Rev. 7 011303 [9] Frisenda R, Navarro Moratalla E, Gant P, Perez De Lara D, Jarillo Herrero P, Gorbachev R V and Castellanos Gomez A 2018 Chem. Soc. Rev. 47 53 [10] Zollner K, Gmitra M, Frank T and Fabian J 2016 Phys. Rev. B 94 155441 [11] Behera S K, Bora M, Paul Chowdhury S S and Deb P 2019 Phys. Chem. Chem. Phys. 21 25788 [12] Zhu Y, Wang X and Mi W 2019 J. Mater. Chem. C 7 2049 [13] Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L and Gao H J 2018 Nano Lett. 18 2133 [14] Zhang Y, Guo H H, Dong B J, Zhu Z, Yang T, Wang J Z and Zhang Z D 2020 Chin. Phys. B 29 037305 [15] Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. Int. Ed. Engl. 54 3112 [16] Shi Z Q, Li H, Yuan Q Q, Xue C L, Xu Y J, Lv Y Y, Jia Z Y, Chen Y, Zhu W and Li S C 2020 ACS Nano 14 16755 [17] Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z, Hao Y and Zeng H 2016 Nat. Commun. 7 13352 [18] Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K and Gao H J 2017 Adv. Mater. 29 1605407 [19] Wang X, Tang C, Zhou X, Zhu W and Cheng C 2019 Appl. Surf. Sci. 491 451 [20] Wu P, Li P and Huang M 2019 Nanomaterials 9 1430 [21] Nie K, Wang X and Mi W 2019 Phys. Chem. Chem. Phys. 21 6984 [22] Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J and Wei Z 2017 Nat. Commun. 8 1958 [23] Gong C and Zhang X 2019 Science 363 eaav4450 [24] Wang Y P, Chen X Y and Long M Q 2020 Appl. Phys. Lett. 116 092404 [25] Zheng G, Xie W Q, Albarakati S, Algarni M, Tan C, Wang Y, Peng J, Partridge J, Farrar L, Yi J, Xiong Y, Tian M, Zhao Y J and Wang L 2020 Phys. Rev. Lett. 125 047202 [26] Hu X, Zhao Y, Shen X, Krasheninnikov A V, Chen Z and Sun L 2020 ACS Appl. Mater. Inter. 12 26367 [27] Guo Y, Zhou S and Zhao J 2021 J. Mater. Chem. C 9 6103 [28] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [29] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [30] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 [31] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [32] Blochl P E 1994 Phys. Rev. B 50 17953 [33] Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298 [34] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456 [35] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [36] Gao Y, Wang X and Mi W 2021 Comput. Mater. Sci. 187 110085 [37] He X and Li J B 2019 Chin. Phys. B 28 037301 [38] Wu Q, Ang Y S, Cao L and Ang L K 2019 Appl. Phys. Lett. 115 083105 [39] Moynihan G, Sanvito S and O'Regan D D 2017 2D Mater. 4 045018 [40] Farmanbar M and Brocks G 2016 Phys. Rev. B 93 085304 [41] Zhang Z, Zhang Y, Xie Z, Wei X, Guo T, Fan J, Ni L, Tian Y, Liu J and Duan L 2019 Phys. Chem. Chem. Phys. 21 5627 [42] Chang J 2018 Nanoscale 10 13652 [43] Sanville E, Kenny S D, Smith R and Henkelman G 2007 J. Comput. Chem. 28 899 [44] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354 [45] Song Y, Li D, Mi W B, Wang X C and Cheng Y C 2016 J. Phys. Chem. C 120 5613 [46] Rostami H, Moghaddam A G and Asgari R 2013 Phys. Rev. B 88 085440 [47] Cummings A W, Garcia J H, Fabian J and Roche S 2017 Phys. Rev. Lett. 119 206601 [48] Vu T V, Hieu N V, Phuc H V, Hieu N N, Bui H D, Idrees M, Amin B and Nguyen C V 2020 Appl. Surf. Sci. 507 145036 [49] Mohanta M K and De Sarkar A 2021 Appl. Surf. Sci. 540 148389 [50] Jiang P, Wang C, Chen D, Zhong Z, Yuan Z, Lu Z Y and Ji W 2019 Phys. Rev. B 99 144401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|