Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 018201    DOI: 10.1088/1674-1056/ac0bad
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex

Xue-Yan Cui(崔雪燕)1, Yi-Jing Yan(严以京)2, and Jian-Hua Wei(魏建华)1,†
1 Department of Physics&Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Hefei National Laboratory for Physical Sciences at the Microscale&Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  The experimental observation of long-lived quantum coherence in the excitation energy transfer (EET) process of the several photosynthetic light-harvesting complexes at low and room temperatures has aroused hot debate. It challenges the common perception in the field of complicated pigment molecular systems and evokes considerable theoretical efforts to seek reasonable explanations. In this work, we investigate the coherent exciton dynamics of the phycoerythrin 545 (PE545) complex. We use the dissipation equation of motion to theoretically investigate the effect of the local pigment vibrations on the population transfer process. The result indicates that the realistic local pigment vibrations do assist the energy transmission. We demonstrate the coherence between different pigment molecules in the PE545 system is an essential ingredient in the EET process among various sites. The coherence makes the excitation energy delocalized, which leads to the redistribution of the excitation among all the chromophores in the steady state. Furthermore, we investigate the effects of the complex high-frequency spectral density function on the exciton dynamics and find that the high-frequency Brownian oscillator model contributes most to the exciton dynamic process. The discussions on the local pigment vibrations of the Brownian oscillator model suggest that the local heterogeneous protein environments and the effects of active vibration modes play a significant role in coherent energy transport.
Keywords:  exciton dynamics      light-harvesting complex      quantum coherence  
Received:  06 April 2021      Revised:  27 May 2021      Accepted manuscript online:  16 June 2021
PACS:  82.20.Wt (Computational modeling; simulation)  
  82.45.Tv (Bioelectrochemistry)  
Fund: This work was supported by the Natural Science Foundation of China (Grant Nos. 11774418 and 11374363). The computing resources are provided by the High Performance Computing Physics Laboratory at Renmin University of China.
Corresponding Authors:  Jian-Hua Wei     E-mail:  wjh@ruc.edu.cn

Cite this article: 

Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华) Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex 2022 Chin. Phys. B 31 018201

[1] Novoderezhkin V I and Grondelle R V 2010 Phys. Chem. Chem. Phys. 12 7352
[2] Blankenship R E 2014 Molecular Mechanisms of Photosynthesis (Chichester: John Wiley and Sons) pp. 3-10
[3] Hu X, Ritz T, Damjanovic A, Autenrieth F and Schulten K 2002 Q. Rev. Biophys. 35 1
[4] Wang X L, Li H R, Zhang P and Li F L 2013 Chin. Phys. B 11 117102
[5] West B A and Moran A M 2012 J. Phys. Chem. Lett. 3 2575
[6] Jonas D M 2003 Annu. Rev. Phys. Chem. 54 425
[7] Brixner T, Stenger J, Vaswani H M, Cho M, Blankenship R E and Fleming G R 2005 Nature 434 625
[8] Collini E, Wong C Y, Wilk K E, Curmi P MG, Brumer P and Scholes G D 2010 Nature 463 644
[9] Wong C Y, Alvey R M, Turner D B, Wilk K E, Bryant D A, Curmi P MG, Silbey R J and Scholes G D 2012 Nat. Chem. 4 396
[10] Cao J S, Cogdell R J, Coker D F et al. 2020 Sci. Adv. 6 eaaz4888
[11] Maiuri M, Ostroumov E E, Saer R G, Blankenship R E and Scholes G D 2018 Nat. Chem. 10 177
[12] Thyrhaug E, Tempelaar R, Alcocer M J P, Žídek K, Bína D, Knoester J, Jansen T L C and Zigmantas D 2018 Nat. Chem. 10 780
[13] Mancal T 2020 Chem. Phys. 532 110663
[14] Engel G S, Calhoun T R, Read E L, Ahn T K, Mančal T, Cheng Y C, Blankenship R E and Fleming G R 2007 Nature 446 782
[15] Doust A B, Van S I H M, Larsen D S, Wilk K E, Curmi P M G, Van G R and Scholes G D 2005 J. Phys. Chem. B 109 14219
[16] Hossein N H, Curutchet C, Kubica A and Scholes G D 2011 J. Phys. Chem. B 115 5243
[17] Hiller R G and Martin C D 1987 BBA Gen. Subj. 923 98
[18] Wilk K E, Harrop S J, Jankova L, Edler D, Keenan G, Sharples F, Hiller R G and Curmi P M G 1999 Proc. Natl. Acad. Sci. USA 96 8901
[19] Doust A B, Marai C N J, Harrop S J, Wilk K E, Curmi P M G and Scholes G D 2004 J. Mol. Biol. 344 135
[20] Curutchet C, Novoderezhkin V I, Kongsted J, Losa M A, Grondelle R V, Scholes G D and Mennucci B 2013 J. Phys. Chem. B 117 4263
[21] Novoderezhkin V I, Doust A B, Curutchet C, Scholes G D and Grondelle R V 2010 Biophys. J. 99 344
[22] Tong Z Q, Huai Z, Mei Y and Mo Y 2020 J. Chem. Phys. 152 135101
[23] Tong Z Q, Huai Z, Mei Y and Mo Y 2019 J. Phys. Chem. B 123 2040
[24] Curutchet C, Kongsted J, Losa M A, Nejad H H, Scholes G D and Mennucci B 2011 J. Am. Chem. Soc. 133 3078
[25] Viani L, Curutchet C and Mennucci B 2013 J. Phys. Chem. Lett. 4 372
[26] Chandrasekaran S, Pothula K R and Kleinekathöfer U 2017 J. Phys. Chem. B 121 3228
[27] Aghtar M, Kleinekathöfer U, Curutchet C and Mennucci B 2017 J. Phys. Chem. B 121 1330
[28] Fleming G R, Scholes G D and Cheng Y C 2011 Procedia. Chem. 3 38
[29] Rebentrost P, Mohseni M, Kassal I, Lloyd S and Guzik A A 2009 New J. Phys. 11 033003
[30] Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
[31] Caruso F, Chin A W, Datta A, Huelga S F and Plenio M B 2009 J. Chem. Phys. 131 105106
[32] Mohseni M, Rebentrost P, Lloyd S and Guzik A A 2008 J. Chem. Phys. 129 174106
[33] Chen H, Wang X, Fang A P and Li H R 2016 Chin. Phys. B 25 98201
[34] Wang X, Chen H, Li C Y and Li H R 2017 Chin. Phys. B 26 037105
[35] Adolphs J and Renger T 2006 Biophys. J. 91 2778
[36] Kolli A, O'Reilly E J, Scholes G D and Castro O A 2012 J. Chem. Phys. 137 174109
[37] Viani L, Corbella M, Curutchet C, O'Reilly E J, Castro O A and Mennucci B 2014 Phys. Chem. Chem. Phys. 16 16302
[38] Aghtar M, Strömpfe J, Olbrich C, Schulten K and Kleinekathöfer U 2014 J. Phys. Chem. Lett. 5 3131
[39] Rivera E, Montemayor D, Masia M and Coker D F 2013 J. Phys. Chem. B 117 5510
[40] Fleming G R and Scholes G D 2004 Nature 431 256
[41] Cheng Y C and Fleming G R 2009 Ann. Rev. Phys. Chem. 60 241
[42] Grondelle V R and Novoderezhkin V I 2006 Phys. Chem. Chem. Phys. 8 793
[43] Cui X Y, Yan Y J and Wei J H 2020 J. Phys. Chem. B 124 2354
[44] Beljonne D, Curutchet C, Scholes G D and Silbey R J 2009 J. Phys. Chem. B 113 6583
[45] Scholes G D 2003 Ann. Rev. Phys. Chem. 54 57
[46] Sener M, Strömpfe J, Hsin J, Chandler D, Scheuring S, Hunter C N and Schulten K 2011 Chemphyschem 12 518
[47] Wu J L, Silbey R J and Cao J S 2013 Phys. Rev. Lett. 110 200402
[48] Cao J S and Silbey R J 2009 J. Phys. Chem. A 113 13825
[49] Cleary L and Cao J S 2013 New J. Phys. 15 125030
[50] Scholes G D, Fleming G R, Castro A O and Grondelle V R 2011 Nat. Chem. 3 763
[51] Mallouk T E 2010 J. Phys. Chem. Lett. 1 2738
[52] Curutchet C, Scholes G D, Mennucci B and Cammi R 2007 J. Phys. Chem. B 111 13253
[53] Doust A B, Wilk K E, Curmi P MG and Scholes G D 2006 J. Photochem. Photobiol. A 184
[54] Scholes G D, Curutchet C, Mennucci B, Cammi R and Tomasi J 2007 J. Phys. Chem. B 111 6978
[55] Iozzi M F, Mennucci B, Tomasi J and Cammi R 2004 J. Chem. Phys. 120 7029
[56] Yan Y J and Xu R X 2005 Annu. Rev. Phys. Chem. 56 187
[57] Leggett A J, Chakravarty S, Dorsey A T, Fisher M PA, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59
[58] Yan Y J, Jin J S, Xu R X and Zheng X 2016 Front. Phys. 11 110306
[59] Yan Y J 2014 J. Chem. Phys. 140 054105
[60] Zhang H D, Xu R X, Zheng X and Yan Y J 2015 J. Chem. Phys. 142 024112
[61] Cui L, Zhang H D, Zheng X, Xu R X and Yan Y J 2019 J. Chem. Phys. 151 024110
[62] Zhang H D, Cui L, Gong H, Xu R X, Zheng X and Yan Y J 2020 J. Chem. Phys. 152 064107
[63] Tanimura Y 1990 Phys. Rev. A 41 6676
[64] Tanimura Y 2006 J. Phys. Soc. Jpn. 75 082001
[65] Jin J S, Wang S K, Zheng X and Yan Y J 2015 J. Chem. Phys. 142 234108
[66] Ding J J, Xu R X and Yan Y J 2012 J. Chem. Phys. 136 224103
[67] Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New J. Phys. 12 065002
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[3] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[4] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[5] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[6] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[7] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[8] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[9] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[10] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[11] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[12] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[13] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[14] The heat and work of quantum thermodynamic processes with quantum coherence
Shanhe Su(苏山河), Jinfu Chen(陈劲夫), Yuhan Ma(马宇翰), Jincan Chen(陈金灿), Changpu Sun(孙昌璞). Chin. Phys. B, 2018, 27(6): 060502.
[15] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
No Suggested Reading articles found!