INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex |
Xue-Yan Cui(崔雪燕)1, Yi-Jing Yan(严以京)2, and Jian-Hua Wei(魏建华)1,† |
1 Department of Physics&Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China; 2 Hefei National Laboratory for Physical Sciences at the Microscale&Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract The experimental observation of long-lived quantum coherence in the excitation energy transfer (EET) process of the several photosynthetic light-harvesting complexes at low and room temperatures has aroused hot debate. It challenges the common perception in the field of complicated pigment molecular systems and evokes considerable theoretical efforts to seek reasonable explanations. In this work, we investigate the coherent exciton dynamics of the phycoerythrin 545 (PE545) complex. We use the dissipation equation of motion to theoretically investigate the effect of the local pigment vibrations on the population transfer process. The result indicates that the realistic local pigment vibrations do assist the energy transmission. We demonstrate the coherence between different pigment molecules in the PE545 system is an essential ingredient in the EET process among various sites. The coherence makes the excitation energy delocalized, which leads to the redistribution of the excitation among all the chromophores in the steady state. Furthermore, we investigate the effects of the complex high-frequency spectral density function on the exciton dynamics and find that the high-frequency Brownian oscillator model contributes most to the exciton dynamic process. The discussions on the local pigment vibrations of the Brownian oscillator model suggest that the local heterogeneous protein environments and the effects of active vibration modes play a significant role in coherent energy transport.
|
Received: 06 April 2021
Revised: 27 May 2021
Accepted manuscript online: 16 June 2021
|
PACS:
|
82.20.Wt
|
(Computational modeling; simulation)
|
|
82.45.Tv
|
(Bioelectrochemistry)
|
|
Fund: This work was supported by the Natural Science Foundation of China (Grant Nos. 11774418 and 11374363). The computing resources are provided by the High Performance Computing Physics Laboratory at Renmin University of China. |
Corresponding Authors:
Jian-Hua Wei
E-mail: wjh@ruc.edu.cn
|
Cite this article:
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华) Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex 2022 Chin. Phys. B 31 018201
|
[1] Novoderezhkin V I and Grondelle R V 2010 Phys. Chem. Chem. Phys. 12 7352 [2] Blankenship R E 2014 Molecular Mechanisms of Photosynthesis (Chichester: John Wiley and Sons) pp. 3-10 [3] Hu X, Ritz T, Damjanovic A, Autenrieth F and Schulten K 2002 Q. Rev. Biophys. 35 1 [4] Wang X L, Li H R, Zhang P and Li F L 2013 Chin. Phys. B 11 117102 [5] West B A and Moran A M 2012 J. Phys. Chem. Lett. 3 2575 [6] Jonas D M 2003 Annu. Rev. Phys. Chem. 54 425 [7] Brixner T, Stenger J, Vaswani H M, Cho M, Blankenship R E and Fleming G R 2005 Nature 434 625 [8] Collini E, Wong C Y, Wilk K E, Curmi P MG, Brumer P and Scholes G D 2010 Nature 463 644 [9] Wong C Y, Alvey R M, Turner D B, Wilk K E, Bryant D A, Curmi P MG, Silbey R J and Scholes G D 2012 Nat. Chem. 4 396 [10] Cao J S, Cogdell R J, Coker D F et al. 2020 Sci. Adv. 6 eaaz4888 [11] Maiuri M, Ostroumov E E, Saer R G, Blankenship R E and Scholes G D 2018 Nat. Chem. 10 177 [12] Thyrhaug E, Tempelaar R, Alcocer M J P, Žídek K, Bína D, Knoester J, Jansen T L C and Zigmantas D 2018 Nat. Chem. 10 780 [13] Mancal T 2020 Chem. Phys. 532 110663 [14] Engel G S, Calhoun T R, Read E L, Ahn T K, Mančal T, Cheng Y C, Blankenship R E and Fleming G R 2007 Nature 446 782 [15] Doust A B, Van S I H M, Larsen D S, Wilk K E, Curmi P M G, Van G R and Scholes G D 2005 J. Phys. Chem. B 109 14219 [16] Hossein N H, Curutchet C, Kubica A and Scholes G D 2011 J. Phys. Chem. B 115 5243 [17] Hiller R G and Martin C D 1987 BBA Gen. Subj. 923 98 [18] Wilk K E, Harrop S J, Jankova L, Edler D, Keenan G, Sharples F, Hiller R G and Curmi P M G 1999 Proc. Natl. Acad. Sci. USA 96 8901 [19] Doust A B, Marai C N J, Harrop S J, Wilk K E, Curmi P M G and Scholes G D 2004 J. Mol. Biol. 344 135 [20] Curutchet C, Novoderezhkin V I, Kongsted J, Losa M A, Grondelle R V, Scholes G D and Mennucci B 2013 J. Phys. Chem. B 117 4263 [21] Novoderezhkin V I, Doust A B, Curutchet C, Scholes G D and Grondelle R V 2010 Biophys. J. 99 344 [22] Tong Z Q, Huai Z, Mei Y and Mo Y 2020 J. Chem. Phys. 152 135101 [23] Tong Z Q, Huai Z, Mei Y and Mo Y 2019 J. Phys. Chem. B 123 2040 [24] Curutchet C, Kongsted J, Losa M A, Nejad H H, Scholes G D and Mennucci B 2011 J. Am. Chem. Soc. 133 3078 [25] Viani L, Curutchet C and Mennucci B 2013 J. Phys. Chem. Lett. 4 372 [26] Chandrasekaran S, Pothula K R and Kleinekathöfer U 2017 J. Phys. Chem. B 121 3228 [27] Aghtar M, Kleinekathöfer U, Curutchet C and Mennucci B 2017 J. Phys. Chem. B 121 1330 [28] Fleming G R, Scholes G D and Cheng Y C 2011 Procedia. Chem. 3 38 [29] Rebentrost P, Mohseni M, Kassal I, Lloyd S and Guzik A A 2009 New J. Phys. 11 033003 [30] Plenio M B and Huelga S F 2008 New J. Phys. 10 113019 [31] Caruso F, Chin A W, Datta A, Huelga S F and Plenio M B 2009 J. Chem. Phys. 131 105106 [32] Mohseni M, Rebentrost P, Lloyd S and Guzik A A 2008 J. Chem. Phys. 129 174106 [33] Chen H, Wang X, Fang A P and Li H R 2016 Chin. Phys. B 25 98201 [34] Wang X, Chen H, Li C Y and Li H R 2017 Chin. Phys. B 26 037105 [35] Adolphs J and Renger T 2006 Biophys. J. 91 2778 [36] Kolli A, O'Reilly E J, Scholes G D and Castro O A 2012 J. Chem. Phys. 137 174109 [37] Viani L, Corbella M, Curutchet C, O'Reilly E J, Castro O A and Mennucci B 2014 Phys. Chem. Chem. Phys. 16 16302 [38] Aghtar M, Strömpfe J, Olbrich C, Schulten K and Kleinekathöfer U 2014 J. Phys. Chem. Lett. 5 3131 [39] Rivera E, Montemayor D, Masia M and Coker D F 2013 J. Phys. Chem. B 117 5510 [40] Fleming G R and Scholes G D 2004 Nature 431 256 [41] Cheng Y C and Fleming G R 2009 Ann. Rev. Phys. Chem. 60 241 [42] Grondelle V R and Novoderezhkin V I 2006 Phys. Chem. Chem. Phys. 8 793 [43] Cui X Y, Yan Y J and Wei J H 2020 J. Phys. Chem. B 124 2354 [44] Beljonne D, Curutchet C, Scholes G D and Silbey R J 2009 J. Phys. Chem. B 113 6583 [45] Scholes G D 2003 Ann. Rev. Phys. Chem. 54 57 [46] Sener M, Strömpfe J, Hsin J, Chandler D, Scheuring S, Hunter C N and Schulten K 2011 Chemphyschem 12 518 [47] Wu J L, Silbey R J and Cao J S 2013 Phys. Rev. Lett. 110 200402 [48] Cao J S and Silbey R J 2009 J. Phys. Chem. A 113 13825 [49] Cleary L and Cao J S 2013 New J. Phys. 15 125030 [50] Scholes G D, Fleming G R, Castro A O and Grondelle V R 2011 Nat. Chem. 3 763 [51] Mallouk T E 2010 J. Phys. Chem. Lett. 1 2738 [52] Curutchet C, Scholes G D, Mennucci B and Cammi R 2007 J. Phys. Chem. B 111 13253 [53] Doust A B, Wilk K E, Curmi P MG and Scholes G D 2006 J. Photochem. Photobiol. A 184 [54] Scholes G D, Curutchet C, Mennucci B, Cammi R and Tomasi J 2007 J. Phys. Chem. B 111 6978 [55] Iozzi M F, Mennucci B, Tomasi J and Cammi R 2004 J. Chem. Phys. 120 7029 [56] Yan Y J and Xu R X 2005 Annu. Rev. Phys. Chem. 56 187 [57] Leggett A J, Chakravarty S, Dorsey A T, Fisher M PA, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 [58] Yan Y J, Jin J S, Xu R X and Zheng X 2016 Front. Phys. 11 110306 [59] Yan Y J 2014 J. Chem. Phys. 140 054105 [60] Zhang H D, Xu R X, Zheng X and Yan Y J 2015 J. Chem. Phys. 142 024112 [61] Cui L, Zhang H D, Zheng X, Xu R X and Yan Y J 2019 J. Chem. Phys. 151 024110 [62] Zhang H D, Cui L, Gong H, Xu R X, Zheng X and Yan Y J 2020 J. Chem. Phys. 152 064107 [63] Tanimura Y 1990 Phys. Rev. A 41 6676 [64] Tanimura Y 2006 J. Phys. Soc. Jpn. 75 082001 [65] Jin J S, Wang S K, Zheng X and Yan Y J 2015 J. Chem. Phys. 142 234108 [66] Ding J J, Xu R X and Yan Y J 2012 J. Chem. Phys. 136 224103 [67] Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New J. Phys. 12 065002 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|